Processor extensions to identify and avoid tracking conflicts between virtual machine monitor and guest virtual machine

    公开(公告)号:US10180854B2

    公开(公告)日:2019-01-15

    申请号:US15278592

    申请日:2016-09-28

    Abstract: A processing system includes an execution unit, communicatively coupled to an architecturally-protected memory, the execution unit comprising a logic circuit to execute a virtual machine monitor (VMM) that supports a virtual machine (VM) comprising a guest operating system (OS) and to implement an architecturally-protected execution environment, wherein the logic circuit is to responsive to executing a blocking instruction by the guest OS directed at a first page stored in the architecturally-protected memory during a first time period identified by a value stored in a first counter, copy the value from the first counter to a second counter, responsive to executing a first tracking instruction issued by the VMM, increment the value stored in the first counter, and set a flag to indicate successful execution of the second tracking instruction.

    Secure encryption key management in trust domains

    公开(公告)号:US12174972B2

    公开(公告)日:2024-12-24

    申请号:US17464163

    申请日:2021-09-01

    Abstract: Implementations describe providing secure encryption key management in trust domains. In one implementation, a processing device includes a key ownership table (KOT) that is protected against software access. The processing device further includes a processing core to execute a trust domain resource manager (TDRM) to create a trust domain (TD) and a randomly-generated encryption key corresponding to the TD, the randomly-generated encryption key identified by a guest key identifier (GKID) and protected against software access from at least one of the TDRM or other TDs, the TDRM is to reference the KOT to obtain at least one unassigned host key identifier (HKID) utilized to encrypt a TD memory, the TDRM is to assign the HKID to the TD by marking the HKID in the KOT as assigned, and configure the randomly-generated encryption key on the processing device by associating the randomly-generated encryption key with the HKID.

    TDX islands with self-contained scope enabling TDX KeyID scaling

    公开(公告)号:US11436342B2

    公开(公告)日:2022-09-06

    申请号:US16727608

    申请日:2019-12-26

    Abstract: Disclosed embodiments relate to trust domain islands with self-contained scope. In one example, a system includes multiple sockets, each including multiple cores, multiple multi-key total memory encryption (MK-TME) circuits, multiple memory controllers, and a trust domain island resource manager (TDIRM) to: initialize a trust domain island (TDI) island control structure (TDICS) associated with a TD island, initialize a trust domain island protected memory (TDIPM) associated with the TD island, identify a host key identifier (HKID) in a key ownership table (KOT), assign the HKID to a cryptographic key and store the HKID in the TDICS, associate one of the plurality of cores with the TD island, add a memory page from an address space of the first core to the TDIPM, and transfer execution control to the first core to execute the TDI, and wherein a number of HKIDs available in the system is increased as the memory mapped to the TD island is decreased.

Patent Agency Ranking