Abstract:
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
Abstract:
A chuck for wafer processing that counters the deleterious effects of thermal expansion of the wafer. Also, a combination of chuck and shadow mask arrangement that maintains relative alignment between openings in the mask and the wafer in spite of thermal expansion of the wafer. A method for fabricating a solar cell by ion implant, while maintaining relative alignment of the implanted features during thermal expansion of the wafer.
Abstract:
The use of non-mass analyzed ion implanter is advantageous in such application as it generates ion implanting at different depth depending on the ions energy and mass. This allows for gaining advantage from lubricity offered as a result of the very light deposition on the surface, and at the same time the hardness provided by the intercalated ions implanted below it, providing benefits for cover glass, low E enhancement, and other similar materials. In further aspects, ion implantation is used to create other desirable film properties such anti-microbial and corrosion resistance.
Abstract:
A photovoltaic cell having a graded doped region such as a graded emitter and methods of making photovoltaic cells having graded doped regions such as a graded emitter are disclosed. Doping is adjusted across a surface to minimize resistive (I2R) power losses. The graded emitters provide a gradual change in sheet resistance over the entire distance between the lines. The graded emitter profile may have a lower sheet resistance near the metal lines and a higher sheet resistance farther from the metal line edges. The sheet resistance is graded such that the sheet resistance is lower where I2R power losses are highest due to current crowding. One advantage of graded emitters over selective emitters is improved efficiency. An additional advantage of graded emitters over selective emitters is improved ease of aligning metallization to the low sheet resistance regions.
Abstract:
A chuck for wafer processing that counters the deleterious effects of thermal expansion of the wafer. Also, a combination of chuck and shadow mask arrangement that maintains relative alignment between openings in the mask and the wafer in spite of thermal expansion of the wafer. A method for fabricating a solar cell by ion implant, while maintaining relative alignment of the implanted features during thermal expansion of the wafer.
Abstract:
A system for transporting substrates and precisely alignment the substrates to shadow masks. The system decouples the functions of transporting the substrates, vertically aligning the substrates, and horizontally aligning the substrates. The transport system includes a carriage upon which plurality of pedestals are loosely positioned, each of the pedestals includes a base having vertical alignment wheels to place the substrate in precise vertical alignment. Two sidebars are configured to freely slide on the base. Each of the sidebars includes a set of horizontal alignment wheels that precisely align the substrate in the horizontal direction. Substrate support claws are attached to the sidebars in precise alignment to the vertical alignment wheels and the horizontal alignment wheels.
Abstract:
A system for transporting substrates and precisely align the substrates horizontally and vertically. The system decouples the functions of transporting the substrates, vertically aligning the substrates, and horizontally aligning the substrates. The transport system includes a carriage upon which plurality of chuck assemblies are loosely positioned, each of the chuck assemblies includes a base having vertical alignment wheels to place the substrate in precise vertical alignment. A pedestal is configured to freely slide on the base. The pedestal includes a set of horizontal alignment wheels that precisely align the pedestal in the horizontal direction. An electrostatic chuck is magnetically held to the pedestal.
Abstract:
An RF antenna system for a plasma chamber comprises an RF input coupling a trunk to an RO power supply; two main branches electrically connected to the main trunk, each of the two main branches coupled to a plurality of rod antennas; a plurality of tuning devices, each provided between one of the rod antennas and the corresponding main branch.
Abstract:
The use of non-mass analyzed ion implanter is advantageous in such application as it generates ion implanting at different depth depending on the ions energy and mass. This allows for gaining advantage from lubricity offered as a result of the very light deposition on the surface, and at the same time the hardness provided by the intercalated ions implanted below it, providing benefits for cover glass, low E enhancement, and other similar materials. In further aspects, ion implantation is used to create other desirable film properties such anti-microbial and corrosion resistance.
Abstract:
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.