Abstract:
To provide continuous annealing equipment, a continuous annealing method, a method of producing cold-rolled steel sheets and a method of producing coated or plated steel sheets which enable a quick response to fluctuations in material properties and enable minimization of fluctuations in mechanical properties of products. The continuous annealing equipment is continuous annealing equipment for steel sheets including, in this order, a heating zone (6) and a soaking zone (7), the soaking zone (7) including a first soaking zone (7A) and a second soaking zone (7B) provided after the first soaking zone (7A), the continuous annealing equipment including: a first induction heating device (9) provided between first soaking zone (7A) and a second soaking zone (7B); and a measuring device (10) configured to measure austenite fractions of the steel sheets at an exit of the second soaking zone (7B).
Abstract:
Provided is a continuous hot-dip galvanizing apparatus comprising: a vertical annealing furnace having heating, soaking zone, and cooling zones therein; and a hot-dip galvanizing line downstream of the cooling zone. The heating, soaking, and cooling zones each have, in its upper portion, at least one upper hearth roll and, in its lower portion, at least one lower hearth roll. The soaking zone has a first and second humidified gas supply ports to supply a humidified gas having a dew point of 10° C. to 30° C. to the soaking zone. The first and second humidified gas supply ports are 1.0 m to 5.0 m lower than the center of the lower and upper hearth rolls, respectively, and overlap the steel sheet. The first humidified gas supply port is provided only for an ascending pass and the second humidified gas supply port is provided only for a descending pass.
Abstract:
A steel strip continuous annealing device has a vertical annealing furnace 10 in which a heating zone 14, a soaking zone 16, and a cooling zone 18 are arranged in this order, and anneals a steel strip P passing through the zones 14, 16, and 18 in the order while being conveyed in the vertical direction in the vertical annealing furnace 10. The heating zone 14, the soaking zone 16, and the cooling zone 18 communicate through an atmosphere separation portion 36. One of a gas delivery port 38 and a gas discharge port 40 is positioned in an upper part and the other one of the gas delivery port 38 and the gas discharge port 40 is positioned in a lower part in each of the heating zone 14, the soaking zone 16, and the cooling zone 18.
Abstract:
Provided are a dew point control method for a continuous annealing furnace, a continuous annealing method for a steel sheet, a steel sheet manufacturing method, a continuous annealing furnace, a continuous hot-dip galvanizing line, and a galvannealing line by which a furnace dew point can be controlled in a short time. The dew point control method includes stopping or reducing supply of humidified gas into the furnace, and supplying dry gas along a furnace inner wall of the continuous annealing furnace in the continuous annealing furnace. According to the dew point control method, a temperature of the furnace inner wall of the continuous annealing furnace may be at least 30° C. higher than a furnace atmosphere temperature in the continuous annealing furnace.
Abstract:
A continuous hot-dip metal coating method that can reduce both non-coating caused by metal vapor generated in a snout and non-coating caused by an oxide film on a molten metal bath surface in the snout and stably and promptly change the oxidizability of the atmosphere in the snout is provided. In a continuous hot-dip metal coating method, oxidizing gas is supplied into a snout 14, a temperature of an inner wall surface of the snout is maintained at 150° C. or less below a temperature of the molten metal bath, and an atmospheric temperature of an upper portion in the snout is maintained at 100° C. or less below the temperature of the molten metal bath.
Abstract:
A method for producing high-strength galvanized steel sheets having excellent coating adhesion, workability and appearance. The method comprises hot rolling a slab comprising, by mass %, C: 0.05 to 0.30%, Si: 0.1 to 2.0% and Mn: 1.0 to 4.0%, then coiling the steel sheet into a coil at a specific temperature TC, and pickling the steel sheet, cold rolling the hot-rolled steel sheet resulting from the hot rolling, annealing the cold-rolled steel sheet resulting from the cold rolling under specific conditions, and galvanizing the annealed sheet resulting from the annealing in a galvanizing bath containing 0.12 to 0.22 mass % Al.
Abstract:
Provided is an apparatus for nitriding a grain-oriented electrical steel sheet which is very useful in obtaining excellent magnetic properties with no variation, that enables generating glow discharge between positive electrodes and negative electrodes disposed in a nitriding zone and irradiating the generated plasma to a strip to perform appropriate nitriding.
Abstract:
A gas wiping nozzle and a method for manufacturing a hot-dip metal-coated steel strip using the gas wiping nozzle. The gas wiping nozzle adjusts the coating weight of a molten metal on the surface of a steel strip pulled up from a molten metal bath. At least the surface of the gas wiping nozzle is made of a ceramic, and the arithmetic mean roughness Ra and the peak count PPI of the gas wiping nozzle satisfy Formula (1): PPI > c 1 × Ra + c 2 ( 1 ) PPI: peak count (the number of peaks per inch) Ra: arithmetic mean roughness [μm] c1 and c2: determined constants for each ceramic used in the surface of the gas wiping nozzle.
Abstract:
A steel-sheet non-plating defect prediction method in manufacturing equipment of a hot-dip galvanized steel sheet which equipment includes an annealing furnace, and a plating device arranged on a downstream side of the annealing furnace, the method includes: predicting steel-sheet non-plating defect information on an exit side of the manufacturing equipment by using a non-plating defect prediction model which is learned by machine learning, the non-plating defect prediction model for which an input data is data including one or two or more parameters selected from attribute information of a steel sheet charged into the manufacturing equipment, one or two or more operational parameters selected from operational parameters of the annealing furnace, and one or two or more operational parameters selected from operational parameters of the plating device, and an output data is non-plating defect information of the steel sheet on the exit side of the manufacturing equipment.
Abstract:
Provided are a method of predicting hydrogen content in steel of a steel strip etc. Provided is, in a continuous galvanizing line that performs manufacturing processes including an annealing process, a coating process, and a reheating process of a steel strip, a method of predicting hydrogen content in steel of a steel strip downstream of the reheating process, including acquiring at least one parameter selected from operation parameters of the continuous galvanizing line and transformation rate information measured in at least one of the annealing process and the reheating process as input data, and predicting hydrogen content in steel of a steel strip downstream of the reheating process using a prediction model of hydrogen content in steel that has been trained by machine learning and that outputs information on hydrogen content in steel of a steel strip downstream of the reheating process as output data.