Abstract:
A prismatic lithium ion battery cell includes a packaging having a cover sealed to a can, wherein the cover includes a reversal disk. A conductive member is disposed above the reversal disk and a power assembly is disposed within the packaging. A first terminal pad and a second terminal pad are disposed above the conductive member and respectively coupled to the power assembly. The reversal disk is configured to deflect upwards and to displace the conductive member to contact the first and second terminal pads in response to a pressure within the packaging being greater than a first predefined pressure threshold and thereby form an external short-circuit between the first and second terminal pads via the conductive member. Subsequently, a portion of the power assembly fails in response to the external short-circuit and interrupts current flow between the first and second terminal pads.
Abstract:
The present disclosure includes a lithium-ion battery module that has a housing and a plurality of lithium-ion battery cells disposed in the housing. Each of the plurality of lithium-ion battery cells includes a first terminal with a first polarity, a second terminal with a second polarity opposite to the first polarity, an overcharge protection assembly, and a casing electrically coupled to the first terminal such that the casing has the first polarity, the casing having an electrically conductive material. The lithium-ion battery module includes a vent of the overcharge protection assembly electrically coupled to the casing and a conductive component of the overcharge protection assembly electrically coupled to the second terminal. The vent is configured to contact the conductive component to cause a short circuit and to vent a gas from the casing into the housing when a pressure in the casing reaches a threshold value.
Abstract:
A battery module (28, 30) includes a housing (50). The battery module also includes a cell stack (56, 58) disposed in the housing (50) and including a battery cell (52). The battery module (28, 30) also includes a force gauge (66) in mechanical communication with the cell stack (56, 58) and configured to measure a force generated by a swelling of the cell stack (56, 58). The battery module (28, 30) also includes a control module (32) configured to receive data indicative of the force and to estimate a remaining usable life of the battery module (28, 30) based on the data.
Abstract:
A prismatic lithium ion battery cell includes a packaging having a cover. The cover includes: a first spiral disk feature disposed below a first terminal pad; a second spiral disk feature disposed below a second terminal pad; a first reversal disk disposed below the first spiral disk feature; and a second reversal disk disposed below the second spiral disk feature. The first and second reversal disks are configured to deflect upwards to displace the first and second spiral disk features to contact the first and second terminal pads, respectively, in response to a pressure within the packaging being greater than a predefined pressure threshold and form an external short-circuit between the first and second terminal pads via the first and second spiral disk features. Subsequently, a portion of the power assembly fails in response to the external short-circuit and interrupts current flow between the first and second terminal pads.
Abstract:
A prismatic lithium ion battery cell includes a packaging having a cover. A power assembly disposed within the packaging has a first (e.g., negative) side and a second (e.g., positive) side. A terminal pad is electrically coupled to the first side, while the cover (84, 62) is electrically coupled to the second side, of the power assembly. The cover includes a spiral disk feature (120) disposed below the terminal pad and a reversal disk (104) disposed below the spiral disk feature. The reversal disk is configured to deflect upwards to displace the spiral disk feature to contact the terminal pad in response to a pressure within the packaging being greater than a first predefined pressure threshold, forming an external short-circuit between the first and second sides of the power assembly. Subsequently, a portion of the power assembly fails in response to the external short-circuit and interrupts current flow within the power assembly.
Abstract:
The present disclosure includes a battery module having a housing with a first end (having a cell receptacle region) and a second end opposite to the first end. The battery module includes a stack of electrochemical cells inserted through the cell receptacle region of the housing, disposed between the first end and the second end of the housing, and having terminal ends of all the electrochemical cells of the stack aligned in a planar area. The battery module includes a bus bar carrier disposed over the stack of electrochemical cells and within the cell receptacle region of the housing. The bus bar carrier includes bus bars disposed thereon that interface with the terminal ends. The battery module includes a layer of thermal epoxy disposed between the second end of the housing and a bottom side of the stack of electrochemical cells.
Abstract:
A battery module includes a housing having an opening and an electrochemical cell disposed in the housing. The electrochemical cell includes a first cell surface having electrode terminals and a second cell surface substantially opposite the first cell surface. The battery module also includes a heat sink integral with the housing and disposed substantially opposite the opening of the housing and a thermally conductive adhesive bonded to the second cell surface and a heat sink surface that is facing the second cell surface. The thermally conductive adhesive includes a bonding shear strength and bonding tensile strength between the electrochemical cell and the heat sink of between approximately 5 megaPascals (MPa) and 50 MPa.
Abstract:
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
Abstract:
The present disclosure includes a battery module having a plurality of battery cells disposed in a housing. Each of the plurality of battery cells has a positive terminal, a negative terminal, an overcharge protection assembly, and a casing having an electrically conductive material. The overcharge protection assembly includes a vent, a first spring component, a second spring component, and an insulative component. The first spring component is coupled to the positive terminal, the second spring component is coupled to the negative terminal, the insulative component is between the first spring component and a conductive piece and between the second spring component and the conductive piece, and the vent is configured to drive the insulative component from between the first and second spring components and the conductive piece, such that the first and second spring components contact the conductive piece, when a pressure in the casing exceeds a threshold.
Abstract:
Systems are disclosed for battery modules having a plurality of electrochemical cells and cooling systems. According to one embodiment, a battery system includes a plurality of battery modules. Each battery module includes a plurality of electrochemical cells in thermal contact with a heat sink. The heat sink may utilize a plurality of fins and a fluid (e.g., air) to cool or heat the electrochemical cells. The electrochemical cells each have a positive terminal blade and a negative terminal blade that function as external terminals for the cell. The negative terminal blade is electrically isolated from the cover of the cell and is configured to be coupled to an internal negative terminal of the cell.