Abstract:
The present invention relates to shape deformable materials, which are capable of (1) being deformed, (2) storing an amount of shape deformation, and (3) recovering at least a portion of the shape deformation when exposed to electromagnetic radiation (EMR) energy. The shape deformable materials can advantageously be in the form of films, fibers, filaments, strands, nonwovens, and pre-molded elements. The shape deformable materials of the present invention may be used to form products, which are both disposable and reusable. More specifically, the shape deformable materials of the present invention may be used to produce products such as disposable diapers, training pants, incontinence products, and feminine care products.
Abstract:
The present invention is directed to biodegradable films and biodegradable precursor films having enhanced breathability and ductility. The films contain a biodegradable polymer and a water soluble polymer. The biodegradable polymer is preferably polycaprolactone, and the water soluble polymer is preferably polyethylene oxide. The precursor film of the present invention preferably has a water vapor transmission rate of at least 500 g/24hrs/m . The biodegradable film of the present invention preferably has a water vapor transmission rate of at least 2500 g/24hrs/m .
Abstract translation:本发明涉及具有增强的透气性和延展性的生物可降解膜和生物可降解前体膜。 这些薄膜含有可生物降解的聚合物和水溶性聚合物。 可生物降解的聚合物优选为聚己内酯,并且水溶性聚合物优选为聚环氧乙烷。 本发明的前体膜优选具有至少500g / 24hrs / m 2的水蒸气透过率。 本发明的生物可降解膜优选具有至少2500g / 24hrs / m 2的水蒸气透过率。
Abstract:
An oil-in-water emulsion that is environmentally friendly and also exhibits antimicrobial activity is provided. More specifically, the oil phase of the emulsion includes a botanical oil derived from a plant (e.g., thymol, carvacrol, etc.). Because the botanical oil tends to leach out of the emulsion during storage and before it is used in the desired application, a water-dispersible polymer is also employed in the aqueous phase of the emulsion to enhance long term stability of the oil and, in turn, antimicrobial efficacy. Without intending to be limited by theory, it is believed that the water-dispersible polymer can effectively encapsulate the botanical oil within the emulsion and inhibit its premature release. Once the emulsion is formed, water can then be removed so that it becomes a substantially anhydrous concentrate. In this manner, the water-dispersible polymer will not generally disperse before use and prematurely release the botanical oil. When it is desired, moisture may simply be re-applied to the concentrate to disperse the polymer and activate the release of the botanical oil. Of course, to provide the optimum degree of biocompatibility, the water-dispersible polymer is also a "biopolymer" that is biodegradable and/or renewable.
Abstract:
Polylactic acid fibers formed from a thermoplastic composition that contains polylactic acid and a polymeric toughening additive are provided. The present inventors have discovered that the specific nature of the components and process by which they are blended may be carefully controlled to achieve a composition having desirable morphological features. More particularly, the toughening additive can be dispersed as discrete physical domains within a continuous phase of the polylactic acid. These domains have a particular size, shape, and distribution such that upon fiber drawing, they absorb energy and become elongated. This allows the resulting composition to exhibit a more pliable and softer behavior than the otherwise rigid polylactic acid. Through selective control over the components and method employed, the present inventors have discovered that the resulting fibers may thus exhibit good mechanical properties, both during and after melt spinning.
Abstract:
A biodegradable and renewable film that may be employed in a wide variety of applications is provided. The film is formed from a thermoplastic composition that contains at least one starch and at least one plant protein. Even at a high renewable material content, the present inventors have discovered that films may be readily formed from plant proteins and starches by selectively controlling the individual amount of the starch and plant proteins, the nature of the starch and plant proteins, and other components used in the film. Balancing the amount of starches and plant proteins within a certain range, for instance, can reduce the likelihood of plant protein aggregation and enhance the ability of the composition to be melt processed. The composition also contains at least one plasticizer that improves the thermoplastic nature of the protein and starch components. The selection of the plasticizer may also help reduce the tendency of the plant protein to aggregate during melt processing. For example, a relatively acidic plasticizer (e.g., carboxylic acid) may be employed in certain embodiments to minimize the formation of disulfide bonds in a gluten protein, and thereby decrease its tendency to aggregate.
Abstract:
Methods for forming a translucent window on the inner surface of a liquid impermeable breathable film outer cover of an absorbent product, such as a diaper, for viewing a water dispersible ink to indicate when an insult has occurred are disclosed. Additionally, absorbent products having a translucent window and a water dispersible ink are disclosed.
Abstract:
A multicomponent fiber that contains a high-melting aliphatic polyester and a low-melting aliphatic polyester is provided. The multicomponent fibers are substantially biodegradable, yet readily processed into nonwoven structures that exhibit effective fibrous mechanical properties.
Abstract:
An absorbent core comprises a multi-microlayer film having a plurality of coextruded microlayers that can perform the multiple functions of acquisition, retention and distribution of fluids. The multi-microlayer films may be formed in a coextrusion process. Each microlayer is manufactured from either a high-recovery polymer or a low-recovery polymer and may be in a substantially alternating configuration within the film. A disruptive force, such as a stretching force, can be applied to at least one portion of the multi-microlayer film to partially delaminate the low-recovery microlayer from the high-recovery microlayer to form corrugations in that portion. The multi-microlayer film can be apertured and additives may be included in either polymer layer.
Abstract:
A polymeric material that is capable of being employed as a build material and/or support material in a three-dimensional printer system is provided. The polymeric material is formed from a thermoplastic composition containing a continuous phase that includes a matrix polymer. A microinclusion additive and nanoinclusion additive are dispersed within the continuous phase in the form of discrete domains.
Abstract:
Microparticles that have a multimodal pore size distribution are provided, Notably, the pore structure of the present invention can be formed without the need for complex techniques and solvent chemistries traditionally employed to form porous microparticles. Instead, the microparticles contain a polymeric material that is formed from a thermoplastic composition, which is simply strained to a certain degree to achieve the desired porous network structure.