Abstract:
A multi-layer device comprising a first substrate and a first electrically conductive layer on a surface thereof, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
Abstract:
A multi-layer device comprising a first substrate and a first electrically conductive layer on a surface thereof, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.
Abstract:
A distributed device control system is provided. The system includes a plurality of windows, each window of the plurality of windows having at least one electrochromic window, a voltage or current driver for the at least one electrochromic window, and a first control system local to the window. The system includes a plurality of window controllers, each window controller configured to couple to one or more of the plurality of windows and having a second control system, for the one or more of the plurality of windows, local to the window controller. The system includes a command and communication device configured to couple to each of the plurality of window controllers, configured to couple to a network, and having a third control system, for the plurality of windows, wherein control of the plurality of windows is distributed across the plurality of windows, the plurality of window controllers, the command and communication device, and a portion of the network.
Abstract:
A cloud learning system for smart windows is provided. The system includes at least one server configured to couple via a network to a plurality of window systems, each of the plurality of window systems having at least one control system and a plurality of windows with electrochromic windows and sensors, wherein the at least one server includes at least one physical server or at least one virtual server implemented using physical computing resources. The at least one server is configured to gather first information from the plurality of window systems, and configured to gather second information from sources on the network and external to the plurality of window systems. The at least one server is configured to form at least one rule or control algorithm usable by a window system, based on the first information and the second information, and configured to download the at least one rule or control algorithm to at least one of the plurality of window systems.
Abstract:
A multi-layer device comprising a first substrate and a first electrically conductive layer on a surface thereof, the first electrically conductive layer having a sheet resistance to the flow of electrical current through the first electrically conductive layer that varies as a function of position.