Abstract:
Method for providing frequency-hopping OFDMA using symbols of comb patter, the method including the steps of: a) assigning frequency domain signal X(k) of comb pattern (comb symbol, k is frequency index) to modulated data sequence, the comb symbol comprising predetermined number of sub carriers (sub carrier group) which are placed with predetermined interval in the whole available frequency band; b) getting the comb symbol hopped for the comb symbol to have independent frequency offset; and c) inverse fast fourier transforming the comb symbol to time domain signal x(n) (n is time index) and transmitting the signal.
Abstract:
Disclosed is a random access data transmission system and method using OFDMA. The system includes a scheduling ID into an access grant on a preamble for a random access, and transmits it together with an acknowledgment or a non-acknowledgment of the preamble, a base station uses the scheduling ID to notify the mobile station of a random access data transmittable time and a data transmission channel through a control channel, and the mobile station transmits a preamble in advance. After receiving a transmission assignment instruction corresponding to a scheduling ID through the control channel, the mobile station transmits random access data through an assigned channel.
Abstract:
Disclosed are an adaptive pilot symbol assignment method that flexibly controls the number of transmit antennas according to each user's moving speed, channel status, or user request, and assigns proper pilot symbols in the downlink of an OFDMA (Orthogonal Frequency Division Multiplexing Access) based cellular system; and a sub-carrier allocation method for high-speed mobile that allocates some sub-carriers to assign proper pilot symbols for ultrahigh-speed mobile users, and the rest of the sub-carriers to the other users to assign proper pilot symbols to the users, on the assumption that the ultrahigh-speed mobile users have a traffic volume almost insignificant to the whole traffic volume.
Abstract:
Disclosed is a downlink signal configuring method and device, and synchronization and cell search method and device using the same in a mobile communication system. A downlink frame has plural symbols into which pilot subcarriers are distributively arranged with respect to time and frequency axes. Initial symbol synchronization and initial frequency synchronization are estimated by using a position at which autocorrelation of a cyclic prefix of a downlink signal and a valid symbol of the downlink is maximized, and cell search and integer-times frequency synchronization are estimated by using pilot subcarriers included in the estimated symbol. Fine symbol synchronization, fine frequency synchronization, and downlink frame synchronization is estimated by using an estimated cell search result. Downlink frequency and time tracking is performed, cell tracking is performed by using a position set of pilot subcarriers inserted into the downlink frame, fine symbol synchronization tracking and fine frequency synchronization tracking are repeated by using the pilot subcarriers to perform the frequency and time tracking of the downlink frame.
Abstract:
Disclosed are an adaptive pilot symbol assignment method that flexibly controls the number of transmit antennas according to each user's moving speed, channel status, or user request, and assigns proper pilot symbols in the downlink of an OFDMA (Orthogonal Frequency Division Multiplexing Access) based cellular system; and a sub-carrier allocation method for high-speed mobile that allocates some sub-carriers to assign proper pilot symbols for ultrahigh-speed mobile users, and the rest of the sub-carriers to the other users to assign proper pilot symbols to the users, on the assumption that the ultrahigh-speed mobile users have a traffic volume almost insignificant to the whole traffic volume.
Abstract:
Disclosed are an adaptive pilot symbol assignment method that flexibly controls the number of transmit antennas according to each user's moving speed, channel status, or user request, and assigns proper pilot symbols in the downlink of an OFDMA (Orthogonal Frequency Division Multiplexing Access) based cellular system; and a sub-carrier allocation method for high-speed mobile that allocates some sub-carriers to assign proper pilot symbols for ultrahigh-speed mobile users, and the rest of the sub-carriers to the other users to assign proper pilot symbols to the users, on the assumption that the ultrahigh-speed mobile users have a traffic volume almost insignificant to the whole traffic volume.
Abstract:
In an OFDMA-based cellular system, a frame of a downlink signal includes a common slot and traffic slots. The common slot includes a synchronization preamble and a cell search preamble. The synchronization preamble has a structure for synchronizing time and frequency, and the cell search preamble has a cell search structure. The traffic slot includes pilot symbols provided on the time and frequency axes. A cyclic prefix is used to estimate initial symbol synchronization, and the initial symbol synchronization and the synchronization preamble are used to synchronize the frame. The synchronization frame and the cell search preamble are used to estimate time and frequency synchronization. The cell search preamble is used to search cells. When the initial synchronization is performed, the cyclic prefix is used to track the frequency, the synchronization preamble is used to track symbol synchronization, and the cell search preamble is used to track fine frequency synchronization.
Abstract:
Disclosed is a downlink signal configuring method and device, and synchronization and cell search method and device using the same in a mobile communication system. A downlink frame has plural symbols into which pilot subcarriers are distributively arranged with respect to time and frequency axes. Initial symbol synchronization and initial frequency synchronization are estimated by using a position at which autocorrelation of a cyclic prefix of a downlink signal and a valid symbol of the downlink is maximized, and cell search and integer-times frequency synchronization are estimated by using pilot subcarriers included in the estimated symbol. Fine symbol synchronization, fine frequency synchronization, and downlink frame synchronization is estimated by using an estimated cell search result. Downlink frequency and time tracking is performed, cell tracking is performed by using a position set of pilot subcarriers inserted into the downlink frame, fine symbol synchronization tracking and fine frequency synchronization tracking are repeated by using the pilot subcarriers to perform the frequency and time tracking of the downlink frame.