Abstract:
Provided are a transmission power determining method and an apparatus thereof for parallel transmission of a plurality of streams. In a wireless communication system, the transmission power determining method and apparatus determine a transmission power suitable for allowing the plurality of streams to be simultaneously and reliably transmitted in a mutually permissible interference range, and use a Hidden Handshaking (HHS) procedure to determine the transmission power. By doing so, it is possible to perform reliable channel allocation and to reliably transmit the plurality of streams.
Abstract:
A method and apparatus for detecting a signal using a cyclo-stationary characteristic value is provided. A method of detecting a signal using a cyclo-stationary characteristic value includes: calculating cyclo-stationary characteristic values with respect to a cyclic frequency domain of an input signal; multiplying the calculated cyclo-stationary characteristic values with each other; and detecting the signal from the input signal based on the result of the multiplication.
Abstract:
Provided are a channel switching method for effectively performing channel switching in a cognitive radio system while protecting an incumbent user, a method of managing a frequency channel, and a base station and customer premises equipment (CPE) using the methods. In the channel switching method performed by the base station, a currently unavailable first frequency channel is detected from among at least one uplink/downlink frequency channel which is set as a communication channel with the CPE; a channel switching request message requesting switching from the first frequency channel to a second frequency channel is transmitted to the CPE; and the first frequency channel is switched to the second frequency channel when a channel switching report message reporting that channel switching is to be performed in response to the channel switching request message is received from the CPE.
Abstract:
The present invention relates to a transmission power control method and device. The transmission power control method for a cognitive radio device according to one embodiment of the present invention includes obtaining CR environmental information about a registered user or an unregistered user occupying an adjacent channel or an adjacent cell of a cognitive radio device, determining a transmission power value of the cognitive radio device using the CR environmental information, and generating transmission power control information including a transmission power value. According to the present invention, the reliable communication of the cognitive radio device can be guaranteed and at the same time interference for a registered user can be minimized.
Abstract:
Provided are a method for using a flexible bandwidth in an orthogonal frequency division multiple access (OFDMA)-based cognitive radio system, and a base station (BS) and a subscriber station using the method. The method includes: allocating a channel band from among unused channel bands having a bandwidth that is a natural number times a bandwidth resolution to customer premises equipment (CPE), wherein the bandwidth resolution is a predetermined bandwidth smaller than a bandwidth of a broadcast channel band, and transmitting an OFDMA-based signal comprising band allocation information indicating information regarding the allocated channel band.
Abstract:
Provided are a method of adaptively allocating appropriate hybrid bursts according to terminal attributes including terminal position, channel state, and service type in an orthogonal frequency-division multiple access (OFDMA) system, and an upstream-MAP information element (US-MAP IE) structure supporting the method. The method includes dividing an upstream subframe into a plurality of zones depending on the number of OFDMA symbols and allocating bursts of a zone to a terminal according to the terminal attributes. Bursts are formed by allocating slots along a time axis in the upstream subframe, and are formed by allocating slots along a frequency axis in a downstream subframe.
Abstract:
Disclosed is a method for reserving resources between a master device and slave devices, and for reserving resources between slave devices on a centralized network. When reserving resources between slave devices, resources can be optimally allocated by measuring links between the slave devices before resource allocation.
Abstract:
In a cognitive radio system, when communication in an operational channel is determined to be discontinued due to that an incumbent user (IU) entering the operational channel that is currently being used or due to that an excessive interference occurring in the operational channel, the operational channel is switched to a pre-arranged channel. However, since some parameters are different between the operational channel and the pre-arranged channel, an initialization procedure has to be performed to allow the cognitive radio system to be adapted to those some parameters. Since an initialization technique aiming for this situation is not developed yet, a conventional cognitive radio system uses a general initialization technique used to initially operate a system. However, the general initialization technique has to allow the system to be adapted to many parameters so that it takes a relatively long initialization time. A channel switching apparatus and method thereof of a base station, which allocates a slot for data exchange with each of a plurality of terminals in a frequency channel that is not used by the IU and thus performs communication, include transmitting a channel switching message for requesting to switch to a backup channel when a signal of the IU is sensed in the frequency channel; transmitting a beacon frame via the backup channel, wherein the beacon frame comprises allocation information about slots which are in the frequency channel and which are respectively allocated to each of the plurality of terminals; and allocating the slot for data exchange with each of the plurality of terminals to the backup channel according to the allocation information, and communicating with each of the plurality of terminals. By doing so, frequency resources between each of networks can be efficiently used, and convenience and efficiency with respect to network operation can be maximized.