Abstract:
A solar cell module includes a plurality of solar cells each including a semiconductor substrate, first electrodes positioned on a front surface of the semiconductor substrate, and second electrodes positioned on a back surface of the semiconductor substrate, and a plurality of wiring members connecting the first electrodes of a first solar cell of the plurality of solar cells to the second electrode of a second solar cell adjacent to the first solar cell. At least a portion of the first electrodes includes first pads each having a width greater than a width of the first electrode at crossings of the wiring members and the first electrodes. A size of at least one of the first pads is different from a size of the remaining first pads.
Abstract:
A solar cell module is disclosed. The solar cell module includes a plurality of solar cells each including a semiconductor substrate, in which a p-n junction is formed, and a plurality of first and second electrodes which are formed on a back surface of the semiconductor substrate and are separated from each other, a plurality of interconnectors which are connected to the first electrodes or the second electrodes included in each solar cell and connect the plurality of solar cells in series, and a conductive adhesive attaching the interconnectors to the first electrodes or the second electrodes. The conductive adhesive includes the same material or the same metal-based material as a metal material included in at least one of the interconnectors or the first and second electrodes.
Abstract:
Discussed is a method for manufacturing a mask for a solar cell according to an embodiment, the method including preparing a plate formed of a nonmetallic material, and irradiating the plate with a laser and forming a plurality of slits.