Abstract:
Disclosed is a process for the production of C2 to C3 olefins via the catalytic cracking of feedstocks including C4 and heavier olefins in an integrated reaction / regeneration system.
Abstract:
A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization- metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, HA, HB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1 -butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons. In other embodiments, the catalyst compound may include at least one element selected from aluminum, gallium, iridium, iron, molybdenum, nickel, niobium, osmium, palladium, phosphorus, rhenium, rhodium, ruthenium, tantalum, titanium, tungsten, and vanadium.
Abstract:
Disclosed herein is a process for producing isoprene that includes reacting a mixed C4 metathesis feed stream comprising isobutylene and at least one of 1-butene and 2-pentene in a first metathesis reactor in the presence of a first metathesis catalyst under conditions sufficient to produce an intermediate product stream comprising at least 30 wt. % 2-methyl-2-pentene based upon the olefin content of fresh feed in the mixed C4 feed stream, and at least one of ethylene and propylene, separating the 2-methyl-2-pentene, subjecting the separated 2-methyl-2-pentene to pyrolysis to produce a reaction product stream comprising isoprene, and separating the isoprene into an isoprene product stream using fractionation. A system used in producing isoprene is also disclosed.
Abstract:
Embodiments disclosed herein provide processes for upgrading the hexene stream to valuable end products, including ethers, high purity 1 -hexene, and, alternatively, high purity isohexene. Hexene upgrading may be performed in embodiments disclosed herein by first removing isohexene from the admixture. The isohexene may undergo etherification with one or more alcohols, facilitating the separation of the isohexene (in the form of an ether) from the normal hexenes. Second, the normal hexenes may be isomerized to convert internal hexene olefins (2 -hexenes and 3 -hexenes) to the desired alpha olefin, 1- hexene. The 1 -hexene may then be separated from unreacted components to yield a high purity 1 -hexene product.
Abstract:
Processes and systems for producing linear alpha olefins are described herein. One embodiment is a process comprising: a) separating a mixed butene stream comprising 1 -butene and 2-butene into an overhead 1 -butene stream and a bottoms 2-butene stream in a butene distillation column, a portion of the bottoms 2-butene stream being separated to form a butene reboiler stream that is heated and vaporized in a reboiler and returned to the butene distillation column, (b) subjecting at least a portion of the overhead 1 -butene stream from (a) to catalytic metathesis to produce an effluent including 3-hexene, (c) isomerizing 3-hexene from (b) to produce a mixed hexene stream comprising 1 -hexene, 2-hexene and 3-hexene, (d) separating the mixed hexene stream in a hexene fractionation tower to form a 1 -hexene vapor overhead stream that is condensed in a cooler and a bottoms stream comprising 2-hexene and 3-hexene, and (e) using heat obtained by condensing the 1 -hexene vapor overhead stream of (d) to heat the butene reboiler stream of (a). Another embodiment is a superfractionation process. Corresponding systems are also disclosed.
Abstract:
Disclosed is a process for the production of C2 to C3 olefins via the catalytic cracking of feedstocks including C4 and heavier olefins in an integrated reaction/regeneration system.
Abstract:
A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons. In other embodiments, the catalyst compound may include at least one element selected from aluminum, gallium, iridium, iron, molybdenum, nickel, niobium, osmium, palladium, phosphorus, rhenium, rhodium, ruthenium, tantalum, titanium, tungsten, and vanadium.