Abstract:
A rotary impact tool according to one aspect of the present invention includes a motor, an impact mechanism, a drive unit, an impact detection unit, and a control unit. The control unit reduces a driving force for the motor caused by the drive unit when a count of impacts detected by the impact detection unit has reached a determination count set in advance, which is a value greater than one.
Abstract:
A communicator in one aspect of the present disclosure includes a connector, a communication circuit, and a communication controller. The connector is electrically coupled to an electric working machine. The communication circuit performs wireless communication. The communication controller cyclically transmits operational information without specifying a recipient via the communication circuit in response to an operating mode of the communication controller being set to an operation-transmission mode. The operational information indicates an operating state of the electric working machine.
Abstract:
An electric work machine (2) includes a motor (M) and a control unit (36) that controls rotation of the motor. The control unit (36) is configured such that an operating mode is switchable between a normal mode, in which the motor is rotated within a prescribed output range, and a power mode, in which the motor is rotatable with energy greater than in the normal mode. Furthermore, the control unit (36) is configured to restrict use of the power mode.
Abstract:
A rotary impact tool according to one aspect of the present invention includes a motor, an impact mechanism, a drive unit, an impact detection unit, and a control unit. The control unit reduces a driving force for the motor caused by the drive unit when a count of impacts detected by the impact detection unit has reached a determination count set in advance, which is a value greater than one.
Abstract:
An electric power tool in one aspect of the present disclosure comprises a motor, a hitting mechanism, a hitting detector, and a control unit. The control unit is configured to set a control amount of the motor so that the motor rotates at a lower speed than a speed in the target rotation state during an initial driving period, and switch the control amount to a final control amount corresponding to the target rotation state when the initial driving period elapses. The initial driving period is a period from when generation of a hitting force is detected by the hitting detector until a predetermined first time period elapses, after the motor is started driven.
Abstract:
A device for a motor-driven appliance includes a communication unit, a date/time information acquisition unit, and a control unit. The communication unit performs communication with an external appliance having a date/time information indicating a current date and time. The date/time information acquisition unit acquires the date/time information from the external appliance via the communication unit. The control unit performs control based on the date/time information acquired by the date/time information acquisition unit.
Abstract:
A motor driven appliance comprises a battery, a motor, at least one switch, a control unit, an abnormality detection unit, a determination unit, and a processing unit. The at least one switch comprises an operation switch. The control unit controls driving of the motor by controlling power supply from the battery to the motor when the operation switch is turned on. The abnormality detection unit detects abnormality of the appliance. The determination unit determines whether the detected abnormality is a first type abnormality that can be cleared when the operation switch is switched from on to off, or is a second type abnormality that cannot be cleared even if the operation switch is merely switched from on to off. The processing unit is configured to perform a specific process when it is determined that the detected abnormality is the second type abnormality.
Abstract:
An electric working machine in one aspect of the present disclosure includes a motor, a controller, and a setter. The controller is configured to change a rotational state of the motor, in response to an establishment of a condition for change after the motor is initiated, from a low speed rotation to a high speed rotation. The setter is configured to set, based on a situation in the motor in the low speed rotation, a control variable of the motor in the high speed rotation and/or the condition for change.
Abstract:
A motor-powered apparatus according to one aspect of the present disclosure comprises a motor, a drive switch, a reverse switch, and a control unit. The control unit is configured to drive the motor in a reverse direction when a drive command is inputted via the drive switch after a reverse command is inputted via the reverse switch and to drive the motor in a forward direction when the drive command is inputted again via the drive switch.
Abstract:
A variable speed switch includes a switch main body portion which is accommodated in a housing of an electric power tool and mounted to the housing so as to be capable of relative movement, and a load sensor which is provided in the switch main body portion and capable of outputting an electric signal in proportion to the amount of distortion caused by a pressing force. The switch operating portion is mounted on the surface of the housing so as to be capable of relative displacement with respect to the housing and transmits a pressing force applied to the switch operating portion to the load sensor, with the maximum displacement amount of the switch operating portion being set to equal to or less than 5 mm.