Abstract:
A method to inspect a solid organ in a subject includes introducing a needle in a predetermined area of the solid organ, inserting an optical probe through a lumen of the needle, and imaging the predetermined area using the optical probe. An optical probe to inspect a solid organ in a subject, the optical probe being intended to be positioned in the solid organ through a needle, the optical probe includes an optical fiber bundle, a ferule to protect the distal tip of the optical fiber bundle, the ferule comprising a shank and a head, and a sheath wrapping the fiber bundle and the shank, wherein the head of the ferule has a length adapted for the optical probe to image the solid organ while keeping the sheath inside the needle.
Abstract:
An imaging device includes an illumination module comprising at least one emitter for emitting at least one excitation beam; a scanning and injection module comprising an image guide, a proximal end and a distal end of which are linked by a plurality of optical fibers; a scanning and injection optical system configured to alternately inject the at least one excitation beam into an optical fiber of the image guide from the proximal end of the image guide; a detection module comprising a detector for detecting a luminous flux collected at the distal end of the image guide, wherein at least one of the illumination module and the detection module is optically conjugated with the scanning and injection module using a conjugating optical fiber.
Abstract:
The invention concerns a miniaturized optical head provided to equip the distal end of a beam of flexible optical fibres scanned by a laser beam, said optical head being designed to come in contact with a sample and to excite said sample confocally; this optical head consisting of means for correcting spherical aberrations and focusing means. According to the invention, the focusing means comprise: at least a first lens (L4) of high convergence associated with a spherical or hemispherical lens (L5) arranged at the distal end of the optical head, and means for correction of the axial and lateral chromatic aberration provided with a single divergent lens (3b) the curvature of which is substantially centred on the pupil of the optical fibre beam and arranged at the exact distance for this pupil for which the conditions of lateral achromatization coincide with the conditions of axial achromatization; this divergent lens being associated with a second convergent lens (L3a) in the form of a doublet (L3).
Abstract:
An intracranial implant to position a fiber bundle to a specified region of a brain of an animal. The implant may include a base support to be fixed to a skull of the animal over an orifice drilled in the skull, a hollow conduit arranged through the base support to guide the fiber bundle to the brain of the animal through the drilled orifice and a first locking member arranged on the base support, to cooperate with a ferrule of the fiber bundle, the first locking member configured to lock the fiber bundle to the specified region of the brain of the animal.
Abstract:
A connector to connect a fiber bundle probe to a light injection module including a tightening cam having an opening of a specified shape adapted to receive the fiber bundle probe, a cam driving coupled to the tightening cam, wherein the tightening cam is configured to translate in response to rotation of the cam driving until the tightening cam is blocked, at least one spring extending between the tightening cam and the cam driving, wherein the at least one spring is configured to resist when the cam driving is actuated by rotation and the tightening cam is blocked, and a locking mechanism to lock the cam driving into a selected position.