Abstract:
PROBLEM TO BE SOLVED: To provide a method and a system for reducing the number of channelizing codes to be minimum, which must be monitored for each cell, when a user device is in an active set. SOLUTION: In a wireless communications system and a method for performing high-speed uplink packet access to a base station from the user device, each of the user device and the base station includes a transmitter, a receiver, and a controller. The user device is designed to transmit a data packet to the base station. The base station is designed to transmit control information corresponding to the data packet to the user device. The control information includes a user device absolute addition channel identification and includes at least one channelizing code assigned to the user device. The controller reduces the number of channelizing codes to be a minimum, which must be monitored for each cell by the user device, based on the channelizing code absolute addition channel identification, based on the transition to a hand-off state and/or to an active channel state. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
The present invention provides a method of scheduling asynchronous transmissions for a plurality of subscriber units (12). The method includes receiving (305) information associated with a plurality of subscriber units that have uplink data to transmit, the information including uplink timing offset information associated with each of the subscriber units (12). Two or more subscriber units (12) are then selected (310) from a set of subscriber units having a timing offset differential, that is below a predetermined threshold, where the timing offset differential is the difference between the timing offset of a first subscriber unit and the timing offset of a second subscriber unit further selectively offset by a multiple of the transmission segment size, which minimizes the difference. The transmission segments, which are available for the uplink of data, are then allocated (315) between the selected two or more subscriber units (12), which limits the number of transmission segments that have at least one of an overlap or a gap, and the amount of any overlap or gap, in order to minimize wasted scheduling opportunities.
Abstract:
A radio communications device (102) that has multiple receive antennas processes received data communications signals to select between space time coding and spatial multiplexing as a selected transmission technique from a base device (104) that has multiple transmit antennas. A channel throughput (402-412, 450-454) for each transmission technique is estimated based on signal to interference and noise ratios (502-512, 550-554) of signals being transmitted through a MIMO channel (140) as measured by a receiver (708). The transmission technique with the higher estimated throughput is determined. If spatial multiplexing is determined to have the higher estimated throughput and the throughput of each layer of the spatially multiplexed signal is greater than a threshold, spatial multiplexing is selected. Otherwise, space time coding is selected.
Abstract:
A method to provide a nominal best effort data rate based on a Quality of Service (QoS) requirement of a user data connection, the method comprising assigning (105) a service priority based on the QoS requirement, and assigning (110) the nominal best effort data rate for the service priority using a predetermined function. Further, it comprises of a method to determine a scheduling priority value for a user data connection by providing a relative fairness. Furthermore, the method comprises a method to satisfy a delay requirement for a delay sensitive data connection through a scheduling.
Abstract:
A transmitter comprises functionality (101, 103) for generating a block of input modulation symbols for example from received data bits. An M-point discrete Fourier transform (105) is applied to the block of input modulation symbols resulting in a frequency domain symbol block. This block is fed to an N-point inverse discrete Fourier transform (105) (N>M) thereby generating a time domain transmit signal. In addition, the transmitter (200) comprises an inter-symbol processor (201) which determines inter-symbol values corresponding to inter-symbol times of the time domain transmit signal and an attenuation processor (203) which attenuates at least one of the input modulation symbols in response to the inter-symbol values. By attenuating selected input modulation symbol(s) a significantly reduced amplitude variation and specifically peak-to-average amplitude variation can be achieved.
Abstract:
A communication system (100) optimizes cell edge performance and spectral efficiency by determining an adaptive power control parameter based on system performance metrics measured by a serving Node B (111) and further measured, and reported to the serving Node B, by neighboring Node B's (110, 112). The adaptive power control parameter is then used to determine an uplink transmit power of a user equipment (UE) (101-104) served by the serving Node B. The uplink transmit power may be determined by the Node B and then conveyed to the UE, or the Node B may broadcast the adaptive power control parameter to the UE and the UE may self-determine the uplink transmit power. In addition, as a frequency reuse factor of one has been proposed for such communication systems, interference levels may be further improved by employment of an intra-site interference cancellation scheme in the sectors serviced by the Node B.
Abstract:
Embodiments of the present invention provide a manner in which feedback from remote units (120-122) involved in a broadcast / multicast service session can be obtained using shared wireless resources and/or shared signaling sequences. Having feedback information from at least some of the remote units involved in the session enables the network equipment (101) to dynamically manage the session and potentially improve the performance of the session. Moreover, utilizing shared wireless resources and/or shared signaling sequences may reduce the overhead cost of obtaining the feedback as compared to utilizing dedicated resources.
Abstract:
A method in a wireless communication network (100) wherein information is communicated in a frame structure wherein each frame includes multiple sub-frames, including grouping at least two wireless communication terminals in a group, assigning the group to less than all sub-frames constituting a communication frame, and assigning a radio resource assignment control channel of one or more assigned sub-frames to the group. The control channel is used to assign radio resources to one or more terminals of the group.
Abstract:
In an Orthogonal Frequency Division Multiplexing communication system (100), a user equipment (102, 104) reports channel quality information that is sufficient to construct a fading profile of a frequency bandwidth and that does not consuming the overhead resulting from the reporting of CQI for every sub-band of the frequency bandwidth. In the communication system, the frequency bandwidth (320) may be represented by multiple sub-band levels (n), wherein each sub-band level comprises a division of the frequency bandwidth into a number of sub-bands different from the number of sub-bands of the other sub-band levels. The user equipment measures a channel quality associated with each sub-band of a sub-band level of the multiple sub-band levels, selects a sub-band of the sub-band level based on the measured channel qualities, and reports channel quality information associated with the selected sub-band to a radio access network.