Abstract:
A method for characterizing inhalation noise within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model ( 912, 1012 ) based on inhalation noise; receiving an input signal ( 802 ) that includes inhalation noise comprising at least one inhalation noise burst; comparing ( 810 ) the input signal to the noise model to obtain a similarity measure; comparing the similarity measure to at least one threshold ( 832, 834 ) to detect the at least one inhalation noise burst; and characterizing ( 1354, 1356 ) the at least one detected inhalation noise burst.
Abstract:
A method for characterizing inhalation noise within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (912, 1012) based on inhalation noise; receiving an input signal (802) that includes inhalation noise comprising at least one inhalation noise burst; comparing (810) the input signal to the noise model to obtain a similarity measure; comparing the similarity measure to at least one threshold (832, 834) to detect the at least one inhalation noise burst; and characterizing (1354, 1356) the at least one detected inhalation noise burst.
Abstract:
A method for equalizing a speech signal generated within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (1152) based on inhalation noise; receiving an input signal (802) that includes a speech signal; and equalizing the speech signal (1156) based on the noise model.
Abstract:
A method for equalizing a speech signal generated within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (1152) based on inhalation noise; receiving an input signal (802) that includes a speech signal; and equalizing the speech signal (1156) based on the noise model.
Abstract:
A method for equalizing a speech signal generated within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (1152) based on inhalation noise; receiving an input signal (802) that includes a speech signal; and equalizing the speech signal (1156) based on the noise model.
Abstract:
A method for characterizing inhalation noise within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (912, 1012) based on inhalation noise; receiving an input signal (802) that includes inhalation noise comprising at least one inhalation noise burst; comparing (810) the input signal to the noise model to obtain a similarity measure; comparing the similarity measure to at least one threshold (832, 834) to detect the at least one inhalation noise burst; and characterizing (1354, 1356) the at least one detected inhalation noise burst.
Abstract:
A method for detecting and attenuating inhalation noise in a communication system coupled to a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (912, 1012) based on inhalation noise; receiving an input signal (802) that includes inhalation noise; comparing (810) the input signal to the noise model to obtain a similarity measure; determining (854) a gain factor based on the similarity measure; and modifying (852) the input signal based on the gain factor, wherein the inhalation noise in the input signal is attenuated based on the gain factor.
Abstract:
A method for characterizing inhalation noise within a pressurized air delivery system, the method including the steps of: generating an inhalation noise model (912, 1012) based on inhalation noise; receiving an input signal (802) that includes inhalation noise comprising at least one inhalation noise burst; comparing (810) the input signal to the noise model to obtain a similarity measure; comparing the similarity measure to at least one threshold (832, 834) to detect the at least one inhalation noise burst; and characterizing (1354, 1356) the at least one detected inhalation noise burst.