Abstract:
A dispatch communication system (100) that includes a system controller (101), multiple base sites (103-105), and a group of communication units (107-111) employs a method and apparatus for communicating therein. A system device (either the system controller or a communication unit) establishes a dispatch communication between the group of communication units. Once the communication is established, the system device starts a timer and continuously determines a first length of time (call time) since establishment of the communication. The system device also determines whether an event indicative of call reassignment has occurred during the communication. When such an event has occurred, the system device determines a second length of time (hang time) based on the call time, wherein the hang time commences upon the occurrence of the event. Upon determining the hang time, the system device further determines whether call reassignment has occurred within the hang time. When call reassignment has not occurred within the hang time, the system device terminates the call.
Abstract:
Apparatus and method for enabling a single communication system (100) to support at least two communication services. For example, one can support both cellular telephone services and trunked dispatch services by sharing some, but not all, of the system infrastructure. Access control gateways (201) and base stations (203) comprise common infrastructure elements, while two separate processors provide control for each service, these being a communication agent processor (104) to support telephone services, and a dispatch call processor (106) to support dispatch call services. These two independent processors each include a data base (303 and 307) that includes information concerning communication units (204-206) operating within the system. During a call set-up sequence, the access control gateway (201) receives a call request from a communication unit via a base station, and passes the request to the appropriate processor, which uses its corresponding database to support the requested service.
Abstract:
A shared data/voice communication system wherein data traffic may be guaranteed priority at a set, but programmable, level of system capacity and wherein interference between such data and voice traffic is effectively minimized. The system operates on standardized channel access rules in the data mode, as well as requesting permission to operate in the voice mode, which if granted, effects a specific protocol to condition the system for voice traffic and manage the same during such pendency. Long and short timers are selectively activated depending upon whether the system is in the voice or data mode to minimize collisions of the system radio data terminals requesting channel access.
Abstract:
A shared data/voice communication system wherein data traffic may be guaranteed priority at a set, but programmable, level of system capacity and wherein interference between such data and voice traffic is effectively minimized. The system operates on standardized channel access rules in the data mode, as well as requesting permission to operate in the voice mode, which if granted, effects a specific protocol to condition the system for voice traffic and manage the same during such pendency. Long and short timers are selectively activated depending upon whether the system is in the voice or data mode to minimize collisions of the system radio data terminals requesting channel access.
Abstract:
A dispatch communication system (100) that includes a system controller (101), multiple base sites (103-105), and a group of communication units (107-111) employs a method and apparatus for communicating therein. A system device (either the system controller or a communication unit) establishes a dispatch communication between the group of communication units. Once the communication is established, the system device starts a timer and continuously determines a first length of time (call time) since establishment of the communication. The system device also determines whether an event indicative of call reassignment has occurred during the communication. When such an event has occurred, the system device determines a second length of time (hang time) based on the call time, wherein the hang time commences upon the occurrence of the event. Upon determining the hang time, the system device further determines whether call reassignment has occurred within the hang time. When call reassignment has not occurred within the hang time, the system device terminates the call.
Abstract:
A communication system (100) employs a method of messaging between a subscriber unit (105) and an infrastructure communication center (101). A messaging key associated with a subscriber unit reference number is provided (203, 403) to the subscriber unit (105) and to the infrastructure communication center (101). An authentication key and/or an identifier for the subscriber unit (105) is then produced (300, 407) by either the subscriber unit (105) or the infrastructure communication center (101). The authentication key and/or the identifier is encrypted (207, 413) with the messaging key and is subsequently communicated (209, 415) between the subscriber unit (105) and the infrastructure communication center (101).