Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted within a localized portion of a bandwidth of the OFDMA signal (818), the synchronization channel signal having predetermined time domain symmetry within the localized portion of the bandwidth (816). The synchronization channel signal enables an initial acquisition and cell search method with low computational load which provides OFDMA symbol timing detection and frequency error detection by differential processing of sequence elements of the synchronization channel signal (1112) and frame boundary detection and cell specific information detection (1114) in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.
Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted including a plurality of sequence elements intereleaved in time and frequency (610, 640). The synchronization channel signal sequence elements enable an initial acquisition and cell search method with low computational load by providing predetermined time domain symmetry (702, 704) for common sequence elements in OFDMA symbol periods (620, 660) for OFDMA symbol timing detection and frequency error detection in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.
Abstract:
A wireless communication network (100) wherein information is communicated in frames comprising multiple sub-frames, including grouping a terminal in first and second groups, assigning the first and second groups to less than all sub-frames in a frame, assigning a control channel of at least one assigned sub-frame to the first and second groups.
Abstract:
A method in a transmitter for data collision avoidance in an uncoordinated frequency hopping communication system is disclosed. The base station (104) first determines (304) that a first data set to be sent to a first device (105) and a second data set to be sent to a second device (107) are scheduled to be transmitted simultaneously on a first frequency of a frequency hop-set. The device then transmits (310) the first data set on the first frequency of the frequency hop-set. The base station delays (312) transmission of the second data set, and finally transmits (316) the second data set on a second frequency of a frequency hop-set.
Abstract:
The present invention provides a method for receiving broadcast data in a system where broadcast data is transmitted on a plurality of frequencies. A user device monitors (302) a first frequency (108) for broadcast data to be transmitted on the first frequency. The device receives on the first frequency a notification of a broadcast data session which is to be sent on a second frequency (114) that is different from the first frequency. The device then determines a configuration associated with the second frequency and in accordance with receiving the broadcast data session and then configures (310) to receive the broadcast data session in accordance with the determined configuration. After receiving the broadcast data session, the device returns to monitoring the first frequency.
Abstract:
A wireless communication infrastructure entity including a transceiver coupled to a controller configured to generate parity bits based on scheduling grant information and to encode the parity bits based on additional scheduling grant information not used to generate the parity bits, wherein the encoded parity bits combined with the scheduling grant information. The additional scheduling grant information may be transport block size or redundancy version information.
Abstract:
A mobile device estimates a data symbol from a received signal by using one or more interference cancellation algorithms. For one interference cancellation algorithm, the mobile device calculates (302) a Channel State Information (CSI) of an interfering sector and calculates (304) a CSI of a serving sector at a different time. The mobile device then determines (310) a correction factor to the CSI of the interfering sector by, for example, estimating a Doppler speed and a time difference between a first time interval like a preamble symbol and a second time interval like any symbol of interest in the data zone. Using the correction factor, the mobile device updates outdated interference information. The mobile device can cancel interference in the received signal distorted by co-channel interference by using the updated interference information. Also, the mobile device can be configured to combine results of multiple interference cancellation algorithms based on the applicability of the individual interference cancellation algorithms in particular scenarios.
Abstract:
A method in a wireless communication device including receiving (410) a composite control channel including at least two control channel elements, each control channel element only contains radio resource assignment information, for example, a codeword, exclusively addressed to a single wireless communication entity. The device combines (420) at least two of the control channel elements, and decodes (430) the combined control channel elements.
Abstract:
A method (400, 500) and apparatus for synchronization for a wireless communication device (300) using multiple synchronization channels. An initial cell search can be performed (420) by the wireless communication device (300). During the initial cell search, a primary synchronization symbol can be acquired (430) only on a center synchronization channel of a plurality of synchronization channels. The plurality of synchronization channels can include the center synchronization channel and a plurality of secondary synchronization channels. The primary synchronization symbol can be associated with the plurality of secondary synchronization channels. A frequency translation can be executed (460) to change a receive channel to acquire one of the secondary synchronization channels.
Abstract:
Disclose is a synchronized wireless communication network (100) operating in single frequency network mode comprising a first base station (502) broadcasting, on a first channel, broadcast data and a common sequence (508) that is generated from a first channel identifier, and wherein the first base station transmits data on a common control channel. A second base station (510), adjacent to the first base station and synchronized with the first base station, the second base station simultaneously broadcasting on the first channel the broadcast data and the common sequence, and wherein the second base station transmits data on a common control channel.