Abstract:
An imaging system includes a radiation source (110) that emits radiation that traverses an examination region. A controller (116) activates the radiation source (110) to emit radiation and deactivates the radiation source (110) to stop radiation emission. The controller (116) selectively activates the radiation source (110) to emit radiation at one or more pre-determined angles. In another embodiment, the imaging system includes a data processing component (124) that generates a virtual three dimensional image of an object of interest of the scanned subject based on the image data. In another embodiment, the imaging system is in a communication with a data manipulation and packaging component (128) that generates at least a two dimensional or a three dimensional data set based on the volumetric image data and packages the data set in an object provided to a remote system (132) that manipulates and navigates through the data set.
Abstract:
An imaging device (100,200) for imaging a volume of interest (5,45) of a subject (4,44) comprises a radiation source (1) for emitting radiation (6), which is arranged for rotational movement around an axis (8) of the subject (4,44), a collimator (3) for collimating the radiation (6) at least in the axial direction of the subject (4,44) before traversing through the subject (4,44), a detector (2) for receiving the collimated radiation (11,12,13,14,15,16) that has traversed through the subject (4,44), and a control unit (7) for controlling the collimator (3) based on at least one geometry parameter that defines a geometrical relationship between the volume of interest (5,45) and the imaging device (100,200). The imaging device (100,200) provides for a reduced dose of radiation applied to the subject (4,44).
Abstract:
A method includes creating a second set of projection data that includes substantially only selected structure of interest based on a first set of projection data that includes the selected structure of interest and other structure. Another method includes generating a second plurality of sliding window slices for a last slice of a first plurality of slices, selecting a second sliding window slice from the second plurality of sliding window slices based on the last slice of the first plurality of slices, and generating a second plurality of slices, including a first slice and a last slice, from a range of projection data around projection data corresponding to the last slice of the first plurality of slices.
Abstract:
A reconstruction method for an image of an object, the reconstruction method comprising receiving a first projection data set representing information about said object, receiving a second projection data set representing information about said object, reconstructing a first image of said object using the first projection data set, reconstructing a second image of said object using the second projection data set, performing a registration between the first image and the second image, and fusing the first image and the second image to said image of said object, wherein the first projecting data set and the second projecting data set are achieved by using a single radiation type.
Abstract:
The invention relates to an apparatus for determining high density shadows in projection data, wherein the apparatus comprises a first projection data providing unit (1, 2, 3, 6, 7, 8) for providing first projection data, which correspond to a projection through an object having an amount of high density elements. The apparatus comprises further a second projection data providing unit (12) for providing second projection data, which correspond to a projection through a model of the object, in which the amount of high density elements is reduced. The apparatus further comprises a determination unit (13) for determining high density shadows in the first projection data by comparing the first projection data with the second projection data.
Abstract:
CT scanners have a certain scan-field-of-view defined by the fan-angle of the system. According to an exemplary embodiment of the present invention, object points outside the scan-field-of-view may be reconstructed on the basis of a system of linear equations which may be solved iteratively and with reasonable effort. Therefore, explicit regularization techniques may be applied to recover the unknown object function.
Abstract:
A method of recording images of the heart in computed tomography is provided in which, in order to prevent movement artifacts, the images are reconstructed on the basis of similar movement states of the heart and different radiation intensities are used for different movement states. During recording operation low-resolution images are continually reconstructed from the recorded data. The movement state of the heart is determined from the low- resolution images, preferably by comparing successive images. During the desired heart phase with little heart movement the power of the X-ray tube is increased. A high-resolution reconstruÌtion is carried out retrospectively from data recorded with a high radiation intensity in similar movement states with little heart movement. Also disclosed are a CT apparatus and a computer program for carrying out the method.