Abstract:
Deformable models are used for the segmentation of structures in 3D images. The basic principle of such methods consists of the adaptation of flexible meshes to the image. However, the simultaneous segmentation of multiple or composed objects often causes problems in that spatial relationships between the objects are violated, or that meshes are intersecting each other. According to the present invention, a priori knowledge about spatial relationships between objects is introduced into the shaped model. This allows to maintain spatial relationships between the objects and to avoid intersecting meshes.
Abstract:
A therapy treatment response simulator includes a modeler (202) that generates a model of a structure of an object or subject based on information about the object or subject and a predictor (204) that generates a prediction indicative of how the structure is likely to respond to treatment based on the model and a therapy treatment plan. In another aspect, a system includes performing a patient state determining in silico simulation for a patient using a candidate set of parameters corresponding to another patient and producing a first signal indicative of a predicted state of the patient, and generating a second signal indicative of whether the candidate set of parameters are suitable for the patient based on a known state of the patient.
Abstract:
An exemplary embodiment of the invention provides a method for producing a triangulation of a surface of a physical object the method comprising the steps of generating an intermediate mesh representation of the surface out of surface voxels (102) and detecting at least one T-junction in the intermediate mesh representation (103). The method further comprising the steps of decomposing of the at least one T-junction into at least one triangle and at least one two-point-polygon (104), and generating the triangulation of the surface out of the modelled intermediate mesh representation (107).
Abstract:
It is an object of the invention to provide a linking system (100) for linking a particular object model from a set of object models with an object in an image that requires relatively few user interactions to create the link. This is achieved in that the linking system comprises a first selection unit (110) for selecting the object in the image, a determining unit (120) for determining a subset of related candidate object models from the set of object models on the basis of the selected object, and a second selection unit for selecting the particular object model from the subset of related candidate object models. By starting the linking process with selecting the object in the image, the task of determining the subset of related candidate object models is delegated to the determining unit and does not require user interaction. This means that a kind of filtering is applied to find an appropriate model. The user does not have to make the selection of the model from the relatively large set.
Abstract:
The present invention aims at improving the point-based elastic registration paradigm. According to the present invention, a force field, for example, with Gaussian-shaped forces, is applied at several points to the image to be deformed. In this case, no landmark correspondences are required and the optimal positions of the force application point are found automatically, which minimizes the différence between the source and target image. Advantageously, this may allow to control a local influence of individual control points.