Abstract:
The invention relates to a data processing apparatus and a method for providing visualisation parameters controlling the display of a medical image (12). The data processing apparatus comprises a mapping component (16). The mapping component (16) is arranged to receive a current dataset (15) corresponding to the medical image and comprising a content description thereof,to compare the content description of the current dataset (15) witha content description ofa pluralityofstored datasets, to select at least one further dataset out of the plurality of stored datasets, to retrieve stored visualisation parameters corresponding to the at least one further dataset, and to prepare the retrieved visualisation parameters as the visualisation parameters controlling the display of the medical image (12).
Abstract:
The present invention aims at improving the point-based elastic registration paradigm. According to the present invention, a force field, for example, with Gaussian-shaped forces, is applied at several points to the image to be deformed. In this case, no landmark correspondences are required and the optimal positions of the force application point are found automatically, which minimizes the différence between the source and target image. Advantageously, this may allow to control a local influence of individual control points.
Abstract:
When delineating anatomical structures in a medical image of a patient for radiotherapy planning, a processor (18) detects landmarks (24) in a low-resolution image (e.g., MRI or low-dose CT) and maps the detected landmarks to reference landmarks (28) in a reference contour of the anatomical structure. The mapped landmarks facilitate adjusting the reference contour to fit the anatomical structure. The adjusted reference contour data is transformed and applied to a second image using a thin-plate spline, and the adjusted high-resolution image is used for radiotherapy planning.
Abstract:
When modeling anatomical structures in a patient for diagnosis or therapeutic planning, an atlas (26) of predesigned anatomical structure models can be accessed, and model of one or more such structures can be selected and overlaid on an a 3D image of corresponding structure(s) in a clinic image of a patient. A user can click and drag a cursor on the model to deform the model to align with the clinical image. Additionally, a processor (16) can generate a volumetric deformation function using splines, parametric techniques, or the like, and can deform the model to fit the image in real time, in response to user manipulation of the model.
Abstract:
A system and method for developing radiation therapy plans and a system and method for developing a radiation therapy plan to be used in a radiation therapy treatment is disclosed. A radiation therapy plan is developed using a registration of medical images. The registration is based on identifying landmarks located within inner body structures.
Abstract:
The invention relates to a method, an apparatus and a computer program for transferring scan geometry between a first region and a second region, similar to the first region. In the method according to the invention the first region and the second region are being identified (4), preferably in the overview image, followed by determination (6) of the first scan geometry corresponding to the first region. Then, the first scan geometry is being transferred into the second scan geometry corresponding to the second region, whereby information on geometrical correspondence between the first region and the second region is used. Preferably, the step of transferring comprises establishing corresponding mappings between similar regions and their respective scan geometries.
Abstract:
The invention aims at improving the point-based elastic registration paradigm. Point-based elastic registration is typically carried out by finding corresponding point landmarks (2, 4) in both images and using the point correspondences as constraints to interpolate the global displacement field. A limitation of this approach is that it only ensures the correspondences between structures where point landmarks (2, 4) can be identified. Alternative concepts are limited by high computational costs for optimization. The concept of the invention provides a method and a system (1) wherein additional deformation field constraints are imposed by: partitioning (PART (I S , I T )) one or more restricted structures corresponding in the first (3) and the second (5) image and imposing additional constraints ( Add
Abstract:
Ground glass opacities in the lung are non-solid nebular-like shadows in the parenchyma tissue of the lung, which may be precursors of a lung cancer. According to the present invention, ground glass opacities may automatically be determined on the basis of a texture analysis of the parenchyma. Advantageously, according to the present invention, a robust and reliable determination of ground glass opacities may be provided, even if vessels, lung walls, airspace or bronchi walls are present within the local neighborhood of the ground glass opacity.