Abstract:
Die vorliegende Erfindung bezieht sich auf eine elektrisch leitende Übertragungsleitung (100), die zur Verwendung in einem Magnettunnel eines Magnetresonanzsystems vorgesehen ist, wobei die Leitung mindestens ein induktives Kopplungselement (106) zum Koppeln von mindestens zwei Adersegmenten (104) der Leitung umfasst, wobei das Kopplungselement (106) weiterhin ein paramagnetisches und/oder ferromagnetisches Material umfasst.
Abstract:
A catheter comprising: -a transmission line (104, 106, 924, 1202, 1302, 1902,), wherein the transmission line comprises a plurality of radio frequency traps (118, 318, 418, 518, 618, 718, 818, 918, 1018, 1202, 1404,); and -a cooling line (104, 304, 1200, 1900) for cooling the plurality of radio frequency traps with a fluid.
Abstract:
The invention relates to electrophysiology catheter systems and their use, such as in an MRI environment, and in particular to analysis of electric signals from such. An electrophysiology (EP) catheter with a plurality of electrically isolated electrode segments arranged in longitudinally spaced bands around the catheter is used to detect electric signals. A workstation receives the electrical signals which are then processed by a processing unit. Electric signals from electrode segments can be used to determine roll angle information of the catheter in relation to patient anatomy by determining signals from electrode segments in contact with tissue. Also, electric signals can be used to extract a reference signal that can be used to correct for gradient induced artefacts.
Abstract:
An optical imaging apparatus (100) for examination of an object of interest (101), the optical imaging apparatus (100) comprising an optical radiation source (102) adapted to emit a primary optical radiation beam onto the object of interest (101), an optical radiation detector (106) adapted to detect a secondary optical radiation beam emitted by the object of interest (101) upon absorbing the primary optical radiation beam, a magnetic field generating element (107) adapted to generate an inhomogeneous magnetic field varying along an extension of the object of interest (101), and a determination unit (108) adapted to determine information concerning the object of interest (101) based on an analysis of the detected secondary optical radiation beam in combination with an analysis of the inhomogeneous magnetic field.
Abstract:
The invention relates to a system (1) for MR imaging of a body (14) placed in an examination volume (7). The system (1) comprises transmission means for radiating RF signals towards the body (14), control means (20) for controlling the generation of the magnetic field gradients and the RF signals, means (17) for receiving and sampling MR signals, reconstruction means (21) for forming MR images from the signal samples, and auxiliary means (23) such as a catheter to be localised having an RF antenna (24)' for receiving RF signals generated by the transmission means. In order to provide an MR system that enables a safe, reliable and non-interfering transmission of signals and/or power to the auxiliary means (23) located within the examination volume (7), the invention proposes that the system (1) is arranged to generate circularly polarised RF signals via the transmission means, which RF signals have a selectable sense of rotation, i.e. forward polarisation or reverse polarisation.
Abstract:
A transmission cable for use in an elongate medical device (420) such as a catheter, guide wire, etc., wherein the transmission cable is capable of being switched to an MR-safe mode only when necessary, while retaining its optimal electrical transmission properties otherwise, is disclosed herein. The transmission cable comprises a transmission line including at least two electrically conductive line segments (104a, 104b) separated by a non-conductive gap (106a), a bridging unit comprising at least one electrically conductive bridge segment (108a) capable of bridging the non-conductive gap, and a switching unit (112) arranged to move the bridging unit and/or the transmission line to electrically connect the two line segments by closing the non-conductive gap using the bridge segment or to electrically disconnect the two line segments by opening the non-conductive gap.
Abstract:
A interventional device for RF ablation for use in a RF electrical and/or magnetic field especially of a MR imaging system is disclosed, comprising an ablation catheter which is preferably trackable or can be guided or visualized in the image generated by the MR imaging system by means of a MR micro-coil (102), and which is provided with an ablation electrode (101). The interventional device further comprises a transmission path (103) with line segments (104', 104") and transformers (105) therebetween, for connecting the MR micro-coil (102) in a differential mode with a MR receiver (108) and for connecting a RF amplifier (107) in a common mode with the ablation electrode (101) for conveying RF ablation power.
Abstract:
The invention relates to a device for magnetic resonance imaging of a body (7), wherein the device (1) is arranged to a) generate a series of MR echo signals (20) by subjecting at least a portion of the body (7) to an MR imaging sequence comprising RF pulses and switched magnetic field gradients, b) acquire the MR echo signals for reconstructing an MR image (21) therefrom, c) calculate a susceptibility gradient map (22) from the MR echo signals or from the MR image (21), the susceptibility gradient map (22) indicating local susceptibility induced magnetic field gradients, d) determine the position of an interventional instrument (16) having paramagnetic or ferromagnetic properties from the susceptibility gradient map (22).
Abstract:
A transmission path (13) for transmitting high frequency (RF) signals is disclosed, which comprises a plurality of lead segments (20, 21, 22) which are coupled to one another on one end by a capacitive coupling element (30) and on the other end by an inductive coupling element (31) and which each have an effective length of approximately ? i /4, wherein ? i is the wavelength of a differential mode signal to be transmitted over the path (13). By providing these element (30, 31) in the form of distributed elements which electrically extend over at least a part of adjacent lead segments (20, 21; 21, 22) a very thin transmission path (13) can be realized, which is especially suitable for use with invasive catheters. Furthermore, this path (13) can be guided through RF fields of a magnetic resonance (MR) imaging system because common mode resonances are effectively suppressed.