Abstract:
The invention relates to a system, a medical image acquisition system, and a method for imaging an interior of a turbid medium (25). The invention also relates to a marker (60) for use in the method for imaging an interior of a turbid medium (25). The system, the medical image acquisition system, and the method may be used for obtaining an image of an interior of a turbid medium (25) by: accommodation of a turbid medium (25) inside a receiving volume (20); irradiation of the receiving volume (20) with light from a light source; detection of light emanating from the receiving volume (20) as a result of irradiating the receiving volume (20) with light from the light source through the use of a photodetector unit. The detected light is then used to reconstruct an image of an interior of the turbid medium (25). According to the invention, the system, the medical acquisition system, and the method are adapted such that during a measurement the receiving volume (20) comprises at least one marker (60) comprising a predetermined concentration of a chosen fluorescent agent. The light source is arranged for generating excitation light that causes fluorescent emission in the marker (60) and the photodetector is arranged to detect light emanating from the receiving volume (20) as a result of irradiating the receiving volume (20) with excitation light. The use of a marker (60) according to the invention enables obtaining information relating to the geometry of the turbid medium (25). If the turbid medium (25) comprises an unknown concentration of a second fluorescent agent, and the light source and the photodetector unit are arranged for causing fluorescence in the second fluorescent agent and detecting the resulting fluorescence light, respectively, the use of a marker (60) according to the invention enables calibration of the signal resulting from this fluorescence light.
Abstract:
The reconstruction of the energy distribution at a detector with a detector element that consists of many small pixels, which count the number of photons above certain thresholds, is performed with a Maximum Likelihood analysis, according to an aspect of the present invention. Thus, the reconstruction scheme may use the redundancy in the measurement and may treat the Poisson statistics accordingly.
Abstract:
The invention relates to an examination apparatus with an X-ray device (10) for circular or helical cone-beam CT acquisition of projections images (P i (E 1 ), P i (E 2 )) of a patient (1) with different energy spectra (E 1 , E 2 ) and/or with an energy -resolved detection. By a combination of the projections, images (I bone , i , I tissue , i ) can be calculated that show predominantly the bone structure and the soft tissue, respectively. Therefore, a 3D model (M bone ) of the bone structure and a 3D model (M tissue ) of the tissue can be reconstructed separately. After removal of artifacts from the bone- structure model (M bone ), both separate 3D models can be integrated to a combined model (M) of the body volume with a high image quality.