Abstract:
A wearable device includes a case and a far infrared temperature sensing device. The case has a first opening. The far infrared temperature sensing device is disposed inside the case of the wearable device. The far infrared temperature sensing device includes an assembly structure, a sensor chip, a filter structure, and a metal shielding structure. The assembly structure has an accommodating space and a top opening. The sensor chip is disposed in the accommodating space of the assembly structure. The filter structure is disposed above the sensor chip. The metal shielding structure is disposed above the sensor chip, and has a second opening to expose the filter structure. The first and second openings are communicated to cooperatively define a through hole.
Abstract:
A wearable device includes a case and a far infrared temperature sensing device. The case has a first opening. The far infrared temperature sensing device is disposed inside the case of the wearable device. The far infrared temperature sensing device includes an assembly structure, a sensor chip, a filter structure, and a metal shielding structure. The assembly structure has an accommodating space and a top opening. The sensor chip is disposed in the accommodating space of the assembly structure. The filter structure is disposed above the sensor chip. The metal shielding structure is disposed above the sensor chip, and has a second opening to expose the filter structure. The first and second openings are communicated to cooperatively define a through hole.
Abstract:
An apparatus and a method for acquiring object image of a pointer are provided. The apparatus is suitable for an optical touch system and is used for acquiring an object image of a pointer when the pointer interacts with a touch surface of the optical touch system. The apparatus includes an image sensor and a processing circuit. The image sensor is used for acquiring an image of the touch surface. When the pointer approaches the touch surface, the processing circuit compares at least a part of the information of a sensed image with a threshold value, so as to determine a comparison range. Then, the processing circuit determines another threshold value according to the image information in the comparison range. Afterwards, the processing circuit compares the image information in the comparison range with the aforementioned another threshold value, so as to acquire an object image of the pointer.
Abstract:
There is provided a smoke detector including a first light source, a second light source surface, a light sensor and a processor. The light sensor receives reflected light when the first light source and the second light source emit light, and generates a first detection signal corresponding to light emission of the first light source and a second detection signal corresponding to light emission of the second light source. The processor distinguishes smoke and floating particles according to a similarity between the first detection signal and the second detection signal.
Abstract:
A wearable device includes a case and a temperature sensing device. The case has a first opening. The temperature sensing device is disposed inside the case of the wearable device. The temperature sensing device includes a first substrate, a sensor chip, and a metal shielding structure. The sensor chip is disposed on the first substrate. The metal shielding structure surrounds the sensor chip, and has a second opening. The sensor chip faces towards the first opening and the second opening.
Abstract:
A control system including a detection device and a control host is provided. The detection device is configured to detect a biometric characteristic to accordingly identify a user ID, and output an ID signal according to the user ID. The control host is configured to receive the ID signal to accordingly perform an individualized control associated with the user ID.
Abstract:
A biometric detection module including a light source module, a detection region and a control module is provided. The light source module is configured to emit green light, red light and IR light in a time division manner to illuminate a skin surface. The detection region is configured to detect penetration light emitted from the light source module for illuminating the skin surface and passing through body tissues to correspondingly generate a green light signal, a red light signal and an IR light signal. The control module is configured to determine a filtering parameter according to the green light signal to accordingly filter the red light signal and the IR light signal, and calculate a biometric characteristic according to at least one of the green light signal, a filtered red light signal and a filtered IR light signal.