Abstract:
There is provided a portable electronic device including a backlight module, an ambient light sensor, a proximity sensor and a processing unit. The backlight module illuminates with backlight brightness. The ambient light sensor is configured to detect ambient light intensity. The proximity sensor is configured to detect an object. The processing unit is configured to activate the proximity sensor when the ambient light intensity detected by the ambient light sensor is lower than a predetermined value or decreases more than a predetermined range, and to maintain or reduce the backlight brightness according to a detection result of the proximity sensor. There is further provided an automatic detection method.
Abstract:
An image system comprises a light source, an image sensing device, and a computing apparatus. The light source is configured to illuminate an object comprising at least one portion. The image sensing device is configured to generate a picture comprising an image. The image is produced by the object and comprises at least one part corresponding to the at least one portion of the object. The computing apparatus is configured to determine an intensity value representing the at least one part and to determine at least one distance between the at least one portion and the image sensing device using the intensity value and a dimension of the at least one part of the image.
Abstract:
An auxiliary filtering device for face recognition is provided. The auxiliary filtering device is used to exclude an ineligible object to be identified according to the relative relationship between object distances and image sizes, the image variation with time and/or the feature difference between images captured by different cameras to prevent the possibility of cracking the face recognition by using a photo or a video.
Abstract:
There is provided an operating method of an image sensor including: storing a first charge from an optoelectronic circuit to a pixel buffer circuit within a first exposure period; storing a second charge from the optoelectronic circuit to the pixel buffer circuit within a second exposure period; transferring the first charge from the pixel buffer circuit to a first storage circuit outside of pixel circuits; transferring the second charge from the pixel buffer circuit to a second storage circuit outside of pixel circuits; and comparing the first charge with the second charge to output an analog image signal.
Abstract:
A device for determining a gesture includes a light emitting unit, an image sensing device and a processing circuit. The light emitting unit emits a light beam. The image sensing device captures an image of a hand reflecting the light beam. The processing circuit obtains the image and determine a gesture of the hand by performing an operation on the image; wherein the operation includes: selecting pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels; selecting a first predetermined percentage of pixels from the sorted pixels; dividing the adjacent pixels in the first predetermined percentage of pixels into a same group; and determining the gesture of the hand according to the number of groups of pixels. A method for determining a gesture and an operation method of the aforementioned device are also provided.
Abstract:
A method and system provide light to project to an operation space so that a received image from the operation space will include, if an object is in the operation space, a bright region due to the reflection of light by the object, and identify a gesture according to the variation of a barycenter position, an average brightness, or an area of the bright region in successive images, for generating a corresponding command. Only simple operation and calculation is required to detect the motion of an object moving in the X, Y, or Z axis of an image, for identifying a gesture represented by the motion of the object.
Abstract:
Glasses with gesture recognition function include a glasses frame and a gesture recognition system. The gesture recognition system is disposed on the glasses frame and configured to detect hand gestures in front of the glasses thereby generating a control command. The gesture recognition system transmits the control command to an electronic device to correspondingly control the electronic device.
Abstract:
The present invention discloses a hybrid pointing device including an optical navigation module and a pointing module. The optical navigation module is configured to replace the conventional buttons of a convention pointing device, such as an optical mouse or a trackball mouse. The optical navigation module is configured to sense gestures of at least one object operated by a user to activate commands associated with particular programs running on the host. Since the optical navigation module is only configured to sense gestures of the object but not the movement of the hybrid pointing device relative to a surface, the resolution thereof is aimed to be sufficiently high enough for sensing gestures and no need to be relatively high.
Abstract:
The present disclosure provides a time delay integration (TDI) sensor using a rolling shutter. The TDI sensor includes multiple pixel columns. Each pixel column includes multiple pixels arranged in an along-track direction, wherein two adjacent pixels or two adjacent pixel groups in every pixel column have a separation space therebetween. The separation space is equal to a pixel height multiplied by a time ratio of a line time difference of the rolling shutter and a frame period, or equal to a summation of at least one pixel height and a multiplication of the pixel height by the time ratio of the line time difference and the frame period. The TDI sensor further records defect pixels of a pixel array such that in integrating pixel data to integrators, the pixel data associated with the defect pixels is not integrated into corresponding integrators.
Abstract:
The present disclosure provides a time delay integration (TDI) sensor using a rolling shutter. The TDI sensor includes multiple pixel columns. Each pixel column includes multiple pixels arranged in an along-track direction, wherein two adjacent pixels or two adjacent pixel groups in every pixel column have a separation space therebetween. The separation space is equal to a pixel height multiplied by a time ratio of a line time difference of the rolling shutter and a frame period, or equal to a summation of at least one pixel height and a multiplication of the pixel height by the time ratio of the line time difference and the frame period. The TDI sensor further records defect pixels of a pixel array such that in integrating pixel data to integrators, the pixel data associated with the defect pixels is not integrated into corresponding integrators.