Abstract:
This disclosure provides systems, methods, and apparatus for transferring power wirelessly via a wireless power transmitter. In one aspect, the transmitter comprises a first circuit configured to generate a first signal, where the first circuit includes a first inductor. The transmitter further comprises a second circuit configured to generate a second signal out of phase with the first signal. The second circuit includes a second inductor inductively coupled with the first inductor. The first inductor and the second inductor may have a leakage inductance of at least a minimum value so as to not produce a substantially square waveform at an output of the first circuit and an output of the second circuit. The transmitter further comprises a filter circuit configured to filter the first signal and the second signal.
Abstract:
Exemplary embodiments are directed to wireless power charging. A device may include at least one sensing element for measuring at least one parameter within a receiver configured to receive wirelessly transmitted power. The device may include a switching element configured to enable the receiver to convey energy to a load when the at least one parameter exceeds a threshold value.
Abstract:
An embodiment of a system for wirelessly charging a wrist- worn device may include a radio frequency (RF) charging energy generating element, and an antenna (120) configured to radiate the RF charging energy, the antenna comprising a first coil (202) and a second coil (204), the first coil and the second coil each comprising a plurality of windings, the windings of the first coil being wound in a direction opposite the direction of the windings of the second coil. An embodiment of a wrist-worn charge-receiving device may include an antenna coil (160) adapted to receive radio frequency (RF) charging energy, the antenna coil comprising non-uniform windings; and a rechargeable power source coupled to the antenna coil, the antenna coil adapted to provide the RF charging energy to the rechargeable power source.
Abstract:
Exemplary embodiments are directed to wireless power communication. In one aspect a wireless power receiver configured to receive wireless power from a wireless power transmitter is provided. The wireless power receiver includes a switchable element configured to couple a receive coil to a ground voltage. The wireless power receiver further includes a detector coupled to the receive coil and configured to detect a pulse generated by another wireless power device.
Abstract:
Exemplary embodiments are directed to detection and validation of wirelessly chargeable devices positioned within a charging region of a wireless power transmitter. A device may include a wireless power transmitter configured detect a change in at least one parameter at the transmitter. The transmitter may further be configured to determine whether at least one valid chargeable device is positioned within a charging region of the transmitter upon detecting the change in the at least one parameter.
Abstract:
This disclosure provides systems, methods and apparatus for decoupling multiple wireless charging transmitters. In one aspect, a device is configured to transmit wireless power to a first receiver. The device includes a first driver coil and a second driver coil. The device further includes a common reactance element connected to the first driver coil and the second driver coil. The reactance element is configured to at least partially cancel mutual inductance between the first driver coil and the second driver coil.
Abstract:
An apparatus for wireless charging using radio frequency (RF) energy includes a first charger portion having first and second charging areas. The first and second charging areas are located in a common plane, each having at least one coil for wirelessly charging a charge-receiving device placed in proximity thereto. The coils include respective windings, which are wound in opposing directions, each coil being connected in series, each coil configured to charge at least one charge-receiving device.A second charger portion has a third charging area having at least one coil including a winding for wirelessly charging a charge-receiving device placed in proximity to the third charging area, the coil in the third charging area being connected in series with the coils in the first and second charging areas, the third charging area located in a plane that is orthogonal to the plane of the first and second charging areas.
Abstract:
Exemplary embodiments are directed to detecting and limiting power transfer to non-compliant devices. A method may include detecting one or more non-compliant devices positioned within a charging region of a wireless power transmitter. The method may further include limiting an amount of power delivered to at least one of the one or more non-compliant devices.