Abstract:
A periodically-transmitted reference signal can have certain proprietary properties to help to help prevent unauthorized detection and utilization of the signal. More specifically, a base station can adjust times at which a reference signal is transmitted and/or a code with which the signal is encoded. These adjustments may be based on an equation or algorithm, which can be shared with particular mobile devices as needed.
Abstract:
Mobile devices often use orthogonal frequency division multiplexing (OFDM) to calculate position information of mobile devices within the network. However, physical distance between the mobile device and a signal source for positioning and other environmental factors can influence the signal strength of received signals. Received signals at the mobile device that are stronger may drown out the weaker signals, particularly when two signal sources occupy the same symbol. In traditional OFDM, a signal source transmits the same symbol for each positioning occasion, so a weaker signal may never be detected over a stronger signal, reducing the accuracy of the positioning calculations. Described herein are systems and methods for using a pattern to vary the designated symbol for each signal source in a wireless network so that a weaker signal from a signal source may be detected on at least some of the positioning occasions.
Abstract:
A reference signal may provide for enhanced bandwidth utilization to enable highly accurate position determination with relatively low bandwidth. For a given allocated bandwidth, a reference signal may use of only a portion of the allocated bandwidth by using plurality of sub-bands. In some cases, the sub-bands may be near the edges of the allocated band to maximize Gabor bandwidth.
Abstract:
A periodically-transmitted reference signal can have certain proprietary properties to help to help prevent unauthorized detection and utilization of the signal. More specifically, a base station can adjust times at which a reference signal is transmitted and/or a code with which the signal is encoded. These adjustments may be based on an equation or algorithm, which can be shared with particular mobile devices as needed.
Abstract:
Methods and systems for wireless communication are provided. In one example, a method comprises: receiving (610), by a mobile device, a radio beam, the radio beam being a directional beam that propagates along an angle of departure with respect to an antenna that transmits the radio beam; identifying (620), by the mobile device, at least one of: the radio beam or a base station that operates the antenna; determining (640), by the mobile device, a position of the mobile device based on identifying at least one of the radio beam or the antenna of the base station; and outputting (650), by the mobile device, the position of the mobile device.
Abstract:
Many mobile devices and mobile networks utilize orthogonal frequency division multiplexing (OFDM) to calculate position information of mobile devices within the network. However, the Doppler Effect and other noise or obstructions can cause OFDM signals to become entangled, particularly when the mobile device is moving, making the calculated position information inaccurate. Described herein are systems and methods for disentangling the OFDM signals by calculating a symbol length for the signals that is longer than the minimum symbol length, which is used in traditional OFDM. Selecting a longer symbol length reduces the Doppler Effect and other noise on the signals, making positioning calculations more accurate.
Abstract:
Methods, apparatuses, and computer-readable media are described. In one example, a method, on a base station, for providing position measurements signals in a wireless communication network, comprises: determining a plurality of subcarriers for downlink transmission, wherein the plurality of subcarriers for downlink transmission comprise all subcarriers indicated in a resource block of a scheduled time of transmission within a scheduled transmission occasion, wherein the resource block comprises a plurality of symbol periods, wherein each symbol period of the plurality of symbol periods is for transmission of a symbol using one or more subcarriers of the plurality of subcarriers (610); and transmitting at the scheduled time of transmission, and using each subcarrier of the plurality of subcarriers, a wireless position measurement signal at the scheduled transmission occasion, the wireless position measurement signal being part of a sequence of wireless signals representing a position measurement signal bitstream (620).
Abstract:
A method for blindly determining positioning reference signals in a wireless communication network determines a positioning reference signal (PRS) network configuration by estimating a PRS energy from predetermined locations of each subframe of an incoming signal. Such a method may also include blindly detecting PRS parameters based on the estimated PRS energy. The PRS energy may be peak energy responses for deep searches or verifications. The PRS energy may be a signal to signal plus noise ratio for shallow searches.
Abstract:
A method for blindly determining positioning reference signals in a wireless communication network determines a positioning reference signal (PRS) network configuration by estimating a PRS energy from predetermined locations of each subframe of an incoming signal. Such a method may also include blindly detecting PRS parameters based on the estimated PRS energy. The PRS energy may be peak energy responses for deep searches or verifications. The PRS energy may be a signal to signal plus noise ratio for shallow searches.