Abstract:
Breathprint sensor systems (152) for verifying the identity of a person using gases produced by the person are disclosed. The breathprint sensor systems include one or more sensors (160) having first response characteristics to compounds in gases and one or more processors (166) being configured to receive a set of test data provided by the one or more first sensors based on an exposure of the one or more first sensors to gases produced by a person and determine whether or not the set of test data verifies the identity of the person. Some aspects of the disclosure relate to a smart inhaler system (150) using a breathprint sensor to assist in delivery of drugs to users through inhalation. Methods for operating breathprint sensor and smart inhaler systems and computer-readable media for implementing the methods are also disclosed.
Abstract:
An apparatus may include an ultrasonic sensor array and a control system. The control system may be configured to acquire first image data generated by the ultrasonic sensor array corresponding to at least one first reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from a target object during a first acquisition time window. The control system may be configured to acquire second image data generated by the ultrasonic sensor array corresponding to at least one second reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from the target object during a second acquisition time window that is longer than the first acquisition time window. The control system may further be configured to initiate an authentication process based on the first image data and the second image data.
Abstract:
Embodiments of an ultrasonic button and methods for using the ultrasonic button are disclosed. In one embodiment, an ultrasonic button may include an ultrasonic transmitter configured to transmit an ultrasonic wave, a piezoelectric receiver layer configured to receive a reflected wave of the ultrasonic wave, a platen layer configured to protect the ultrasonic transmitter and the piezoelectric receiver layer, a first matching layer configured to match an acoustic impedance of the platen layer with an acoustic impedance of ridges of a finger, and an ultrasonic sensor array configured to detect the finger using the reflected wave.