Abstract:
Methods, systems, and devices are described for opportunistically using at least a portion of a dedicated short range communications (DSRC) spectrum. A multi-mode device is operated outside of the DSRC spectrum. An activity level is detected on at least a portion of the DSRC spectrum, and it is determined whether to use at least the portion of the DSRC spectrum based at least in part on the detected activity level.
Abstract:
Methods and apparatus supporting enhanced discovery operations in peer to peer networks are described. Peer discovery, based on direct peer to peer discovery between two mobile nodes can be somewhat limited, e.g., due to power limitations, processing power, and/or channel conditions. An access point, e.g., base station, monitors for and receives peer discovery signals conveying a set of identifiers from a wireless communications device. The access point retransmits at least one identifier in the set in a wireless peer to peer communications channel. Thus the access point effectively extends the peer discovery range for wireless communications devices utilizing the peer to peer network. Wireless communications devices can monitor for and recover the rebroadcast peer discovery signals from access points. Thus, via access point signaling a wireless communications device can be made situationally aware of other devices of interest which would be otherwise outside its discovery detection range.
Abstract:
Methods and apparatus well suited for efficiently communicating small amounts of information relatively frequently in a wireless communications system are described. An uplink timing frequency structure for an access point includes a set of dedicated uplink communications resources, e.g., expression advertisement interval air link resources. Different ones of the set of dedicated uplink communications resources correspond to different individual wireless communications devices currently registered with the access point. In the downlink timing frequency structure for the access point there are dedicated downlink broadcast communications resources, e.g., expression broadcast interval air link resources and neighbor expression broadcast interval air link resources. Information received on dedicated uplink air link resources is echoed back or selectively echoed back on the dedicated downlink air link resources. Wireless communications devices monitor downlink dedicated air link resources to recover expression information being communicated by other wireless communications devices in its local vicinity.
Abstract:
A first wireless communications device includes a wide area network (WAN) interface and a peer to peer interface. The first device discovers the presence of a second wireless communications device via a peer discovery signal, received via its peer to peer interface. The second device has been transmitting, e.g., periodically, certain information, e.g., its location and/or shopping preferences, to a node within the WAN. The detected first signal triggers an application alert in the first device. The first device recovers past information about the second device through a second signal received via its WAN interface. The first device uses information communicated in the first signal, e.g., device identifier information, and information communicated in the second signal, e.g., past location and/or shopping information, to generate a targeted message for the second device. The first device communicates the targeted message via its peer to peer interface in a peer to peer traffic channel.
Abstract:
Techniques for performing automatic gain control (AGC) at a terminal in a wireless communication network are described. In an aspect, the terminal may use different receiver gain settings to receive different types of signals in different time intervals. The terminal may determine a receiver gain setting for each signal type and may use the receiver gain setting to receive signals of that signal type. In another aspect, the terminal may determine a receiver gain setting for a future time interval based on received power levels for peer terminals expected to transmit in that time interval. The terminal may measure received power levels of signals received from a plurality of terminals. The terminal may determine a set of terminals expected to transmit in the future time interval and may determine the receiver gain setting for the future time interval based on the measured received power levels for the set of terminals.
Abstract:
A first wireless communications device includes a wide area network (WAN) interface and a peer to peer interface. The first device discovers the presence of a second wireless communications device via a peer discovery signal, received via its peer to peer interface. The second device has been transmitting, e.g., periodically, certain information, e.g., its location and/or shopping preferences, to a node within the WAN. The detected first signal triggers an application alert in the first device. The first device recovers past information about the second device through a second signal received via its WAN interface. The first device uses information communicated in the first signal, e.g., device identifier information, and information communicated in the second signal, e.g., past location and/or shopping information, to generate a targeted message for the second device. The first device communicates the targeted message via its peer to peer interface in a peer to peer traffic channel.