Abstract:
A deployment and distribution model improves content delivery with a business incentive for placement of kiosks with one or more wireless access points in public locations so that portable media players (PMPs) can receive media content (e.g., audio, video, text, haptic content, etc.). In addition, coordination between subscribing users of PMPs, vendors who provide kiosks, and a network central controller of a content distribution system allow for prepositioning of video content at the kiosks through economically desirable low data rate communication links from the network (e.g., dial-up modem, DSL, etc.); coordinated queuing of downloads (e.g., partial downloads) between kiosk to PMP, peer-to-peer (P2P) downloading between PMPs, and uploads from PMP to kiosk; billing/crediting to correspond with such participation in the distribution; and changing priority/selection of prepositioning of content at kiosks to reflect a clientele profile.
Abstract:
A method and system for a handoff in a broadcast communication system is disclosed. A subscriber assisted handoff is impractical in a broadcast communication system due to e.g., a high signaling load, a difficulty to synchronize the broadcast transmission. On the other hand, the small number of broadcast channels enables the subscriber station to perform the handoff autonomously. To streamline the autonomous handoff decision process, several distinct sets of pilot identifiers and rules for transitioning among the sets are defined. To fully integrate broadcast services with the services provided by the cellular telephone systems in a subscriber environment, a methods for various handoff scenarios are analyzed.
Abstract:
A system and method for enabling multiple transmitters (400) to share a single code division multiplexed (CDM) or code division multiple access (CDMA) channel using orthogonal waveforms. A set of orthogonal channelizing codes Wi(t) is generated, and each transmitter (400) is allocated orthogonal channelizing codes and pseudonoise polynomials in a predetermined manner. The transmitters channelize each user signal using an orthogonal channelizing code Wi(t), and spread each user signal using a pseudonoise (PN) spreading code. Each transmitter employs the same PN spreading codes and time offsets. Additionally, no one orthogonal channelizing code is assigned to more than one transmitter during the time period they are sharing a CDM channel. The spread signals are summed at each transmitter (404) prior to transmission as a composite signal. The offsets are time-precorrected (406, 510) to ensure time alignment at the receivers. The frequencies of the signals are precorrected (408, 512) to ensure frequency alignment at the receivers.
Abstract:
A system for determining the rate at which data has been encoded in the receiver (12) of a variable-rate communications system. The data is received in symbols that are grouped in frames. When data is transmitted at full rate, the frame is filled with symbols. When the data is transmitted at less than full rate, symbols are repeated within a frame until the frame is full or the symbols are spaced apart within a frame. At an encoding rate of one fourth the full rate, for example, each symbol in the frame is repeated four times or data is transmitted one quarter of the time. The incoming frames are decoded, for example by decoder (48), and re-encoded, for example by encoder (76), at each possible data rate. A comparator, for example comparator (84), compares the re-encoded symbols with the originally received symbols and a counter, for example counter (100), counts the number of symbol errors. Each decoding process produces an indication of the quality of the decoding process which may include Cyclic Redundancy Check (CRC) results, for example CRC (120), or Yamamoto Quality Metrics. The counted errors and the quality indication comprise an error metric which is passed to a processor, for example microprocessor (56). The processor analyzes the error metric for each data rate and determines the most probable rate at which the incoming symbols were encoded.
Abstract:
Methods and systems for estimating and canceling pilot interference in a wireless (e.g., CDMA) communication system. In one method, a received signal comprised of a number of signal instances, each including a pilot, is initially processed to provide data samples. Each signal instance's pilot interference may be estimated by despreading the data samples with a spreading sequence for the signal instance, channelizing the despread data to provide pilot symbols, filtering the pilot symbols to estimate the channel response of the signal instance, and multiplying the estimated channel response with the spreading sequence. The pilot interference estimates due to a plurality of interfering multipaths are accumulated to derive the total pilot interference, which is subtracted from the data samples to provide pilot-canceled data samples. These samples are then processed to derive demodulated data for each of at least one (desired) signal instance in the received signal.
Abstract:
A system and method for enabling multiple transmitters (400) to share a single code division multiplexed (CDM) or code division multiple access (CDMA) channel using orthogonal waveforms. A set of orthogonal channelizing codes Wi(t) is generated, and each transmitter (400) is allocated orthogonal channelizing codes and pseudonoise polynomials in a predetermined manner. The transmitters channelize each user signal using an orthogonal channelizing code Wi(t), and spread each user signal using a pseudonoise (PN) spreading code. Each transmitter employs the same PN spreading codes and time offsets. Additionally, no one orthogonal channelizing code is assigned to more than one transmitter during the time period they are sharing a CDM channel. The spread signals are summed at each transmitter (404) prior to transmission as a composite signal. The offsets are time-precorrected (406, 510) to ensure time alignment at the receivers. The frequencies of the signals are precorrected (408, 512) to ensure frequency alignment at the receivers.
Abstract:
A system for determining the rate at which data has been encoded in the receiver (12) of a variable-rate communications system. The data is received in symbols that are grouped in frames. When data is transmitted at full rate, the frame is filled with symbols. When the data is transmitted at less than full rate, symbols are repeated within a frame until the frame is full or the symbols are spaced apart within a frame. At an encoding rate of one fourth the full rate, for example, each symbol in the frame is repeated four times or data is transmitted one quarter of the time. The incoming frames are decoded, for example by decoder (48), and re-encoded, for example by encoder (76), at each possible data rate. A comparator, for example comparator (84), compares the re-encoded symbols with the originally received symbols and a counter, for example counter (100), counts the number of symbol errors. Each decoding process produces an indication of the quality of the decoding process which may include Cyclic Redundancy Check (CRC) results, for example CRC (120), or Yamamoto Quality Metrics. The counted errors and the quality indication comprise an error metric which is passed to a processor, for example microprocessor (56). The processor analyzes the error metric for each data rate and determines the most probable rate at which the incoming symbols were encoded.