Abstract:
A device includes a main two-stage low noise amplifier (LNA) configured to amplify a carrier aggregation (CA) communication signal, the main two-stage LNA comprising a first LNA stage and a second LNA stage, an output of the first LNA stage having a first stage second order intermodulation product, the second LNA stage comprising a phase-inverter configured to phase-invert the output of the first LNA stage to generate a second stage phase-inverted output, and an auxiliary LNA stage coupled to the main two-stage LNA, the auxiliary LNA stage configured to cancel the first stage second order intermodulation product.
Abstract:
An apparatus includes an auxiliary mixing path configured to receive a differential signal. The apparatus also includes a filter having an input coupled to the auxiliary mixing path.
Abstract:
Designs and techniques for manufacturing microelectronic antenna tuners are provided. An example microelectronic antenna system includes a radio frequency integrated circuit comprising a plurality of radio frequency signal ports disposed in a first area, a plurality of tuning devices disposed in a second area of the radio frequency integrated circuit, at least one antenna element disposed on a substrate coupled to the radio frequency integrated circuit, and at least one feedline disposed in the substrate and configured to communicatively couple the at least one antenna element, at least one of the plurality of tuning devices, and one of the plurality of radio frequency signal ports.
Abstract:
Disclosed aspects relate to methods and apparatus for coexistent radio frequency (RF) systems in a wireless device. Control of a wireless device includes detecting when a turn on signal is issued to a first radio system, and then controlling the second radio system to either modify the operation of receiver circuitry in the second radio system to protect components within that system, or modify transmit circuitry to stop transmissions for protecting components within one radio system potentially affected by transmission from the other radio system in the wireless device. Disclosed also is monitoring of transmission states of the radio systems based on reading messages between the first and second radio systems and issuing a notification message based thereon such that one of the radio systems may suspend monitoring of a transmit channel for permission to transmit in order to reduce power consumption due to such monitoring of the channel.
Abstract:
An apparatus is disclosed for transceiving signals in multiple modes. In example implementations, an apparatus includes a transceiver that includes a first amplifier; a mixer having at least one input node and at least one output node, with the at least one input node coupled to the first amplifier; and a second amplifier coupled to the at least one output node of the mixer. The transceiver also includes a first register coupled to the first amplifier and a second register coupled to the second amplifier. The transceiver further includes at least one memory realizing a lookup table. The at least one memory is coupled to the first register and the second register. The lookup table includes a first portion corresponding to a first mode of the transceiver and a second portion corresponding to a second mode of the transceiver.
Abstract:
Disclosed aspects relate to methods and apparatus for coexistent radio frequency (RF) systems in a wireless device. Control of a wireless device includes detecting when a turn on signal is issued to a first radio system, and then controlling the second radio system to either modify the operation of receiver circuitry in the second radio system to protect components within that system, or modify transmit circuitry to stop transmissions for protecting components within one radio system potentially affected by transmission from the other radio system in the wireless device. Disclosed also is monitoring of transmission states of the radio systems based on reading messages between the first and second radio systems and issuing a notification message based thereon such that one of the radio systems may suspend monitoring of a transmit channel for permission to transmit in order to reduce power consumption due to such monitoring of the channel.
Abstract:
A circuit includes a passive low gain low noise amplifier (LNA) configured to receive a communication signal, an active low gain LNA configured to receive the communication signal, a shared coupling circuit, outputs of the passive low gain LNA and the active low gain LNA coupled to the shared coupling circuit, an output circuit, an output of the shared coupling circuit coupled to the output circuit, and a high gain LNA configured to receive the communication signal, the high gain LNA coupled to the output circuit along a path that bypasses the shared coupling circuit.
Abstract:
An apparatus includes an amplifier and a first inductor coupled to an input of the amplifier. The apparatus also includes a second inductor that is inductively coupled to the first inductor and that couples the amplifier to a first supply node. The apparatus further includes a third inductor that is inductively coupled to the first inductor and to the second inductor and that couples the amplifier to a second supply node.
Abstract:
An apparatus is disclosed for oscillator feedthrough calibration, such as a component arrangement that can be calibrated to account for signal leakage from an oscillator coupled to a mixer circuit. In example aspects, the apparatus includes a mixer circuit having a first stage, a second stage, and tuning circuitry. The first stage includes at least one transistor coupled between a mixer input and a mixer output. The second stage includes one or more transistors coupled between the at least one transistor of the first stage and the mixer output. The one or more transistors are also coupled between a local oscillator signal input and the mixer output. The tuning circuitry includes at least one current source coupled to the at least one transistor of the first stage.
Abstract:
An apparatus is disclosed for a hybrid wireless transceiver architecture that supports multiple antenna arrays. In an example aspect, the apparatus includes a first antenna array, a second antenna array, and a wireless transceiver. The wireless transceiver includes first dedicated circuitry dedicated to the first antenna array and second dedicated circuitry dedicated to the second antenna array. The wireless transceiver also includes shared circuitry that is shared with both the first antenna array and the second antenna array.