Abstract:
Techniques for performing low-latency blind rate detection of a frame, wherein the frame is divided into a plurality of sub-segments. In an exemplary embodiment, symbols of a primary sub-segment of a frame are received and deinterleaved to recover information bits and at least one quality metric for each of a plurality of rate hypotheses. Symbols of a secondary sub-segment of the frame are also received and deinterleaved to recover information bits and at least one quality metric for each of the plurality of rate hypotheses. The recovered information bits and quality metrics for each rate hypothesis may be compared between the primary and secondary sub-segments to select the most likely rate hypothesis. In an exemplary embodiment, the at least one quality metric may include a frame quality indicator (FQI) such as a cyclical redundancy check (CRC).
Abstract:
In a code division multiple access communication system (100), a method and an apparatus provide for efficient communications of data rate control information. A mobile station (102) communicates a request on a data channel (302) for reception of a data file on a traffic channel (203). In response to the request, a transmitter (600) in mobile station (102) starts communication of data rate control information on a data rate control channel (305). After concluding the delivery of a requested data file by a receiver (400) in mobile station (102), transmitter (600) ceases communication of data rate control information on data rate control channel (305) from mobile station (102).
Abstract:
In a communication system (100), a method and an accompanying apparatus provide for acknowledging reception of a packet of data. A receiver (400) at a serving base station (101) receives a message on an acknowledgement channel (340) for indicating the reception of the packet of data at a mobile station (102), and may determine an erasure of the message. A non-serving base station (160) may also receive the message on the acknowledgement channel (340) from the mobile station (102), determines a value of the message, and communicates the value of the message to the serving base station (101). The serving base station (101) changes the erasure to the value of the message, and terminates a transmission of a remainder of data units of the packet of data to the mobile station (102) when the value of the message is a positive acknowledgment from the non-serving base station (160).
Abstract:
A novel and improved method for implementing a high-transmission-rate over-the-air interface is described. A transmit system provides an in-phase channel set (90) and a quadrature-phase channel set (92). The in-phase channel set (90) is used to provide a complete set of orthogonal medium rate control and traffic channels. The quadrature-phase channel (92) set is used to provide a high-rate supplemental channel and an extended set of medium rate channels that are orthogonal to each other and the original medium rate channels. The high-rate supplemental channel is generated over a set of medium rate channels using a short channel code. The medium rate channel are generated using a set of long channel codes.
Abstract:
Disclosed are examples in which the acknowledgement channel is used for retransmitting a frame received with error. A receiver is configured to transmit an acknowledgment for a frame when the frame is decoded following receipt of the last Pilot Control Group (PCG) of the same frame. The transmitter is configured to receive the acknowledgment of an earlier frame during a subsequent frame, and not to retransmit the earlier frame. The two frames may be adjacent. During connection setup negotiation, the system can determine the values of ack_mask1 defining allowed times for the receiver to acknowledge successful decoding of the subsequent frame, and ack_mask2 defining allowed times for the receiver to acknowledge successful decoding of the earlier frame. The two mask values provide non-overlapping allowed times, so the receiver can acknowledge within the subsequent frame (1) successful decoding of the earlier frame, and (2) successful decoding of the subsequent frame.
Abstract:
Techniques for improving the capacity of a wireless communications system using interference cancellation (IC). In an early decoding and IC aspect, a frame transmitted from a user to a base station may be decoded prior to the entire frame being received by the base station. The remaining portion of the frame may then be re-constructed at the base station prior to its reception, and cancelled from the receive signal to reduce the interference to frames received from other users. In a power control aspect for early decoding and IC, the power control target level at a local base station may be adjusted in response to successfully early decoding a frame, without affecting the overall outer loop power control operation. Further aspects include late decoding techniques for utilizing the IC of other users' signals to improve the probability of decoding a given user's frames, as well as techniques for traffic channel demodulation using channel re-estimation.
Abstract:
Techniques for generalized pilot interference cancellation in a communications receiver. In an exemplary embodiment, a residual pilot is cancelled from a post-traffic cancellation signal following initial first-pass pilot cancellation. Residual pilot cancellation (412) is achieved by adding the first-pass cancelled pilot as earlier stored in memory (630) back to the post-traffic cancellation (461) signal, and pilot filtering the resulting signal to generate an improved pilot interference estimate (620) In an alternative exemplary embodiment, an arbitrary number of iterations may be applied to generate the pilot interference estimate by successively storing each generated pilot interference estimate in memory.
Abstract:
Techniques to increase capacity in a wireless communications system. In an aspect, systematic non-transmission, or "blanking," of minimal-rate frames transmitted in a communications system is provided. In an exemplary embodiment, eighth rate frames in a cdma2000 voice communications system are systematically substituted with null-rate frames carrying zero traffic bits. Provisions are nevertheless made for the transmission of certain designated as "critical" by, e.g., a vocoder. The receiver detects the presence of null rate or non-null rate transmissions and processes the received frames accordingly, including updating an outer loop power control only in response to non-null rate frames. Further techniques for changing the pilot transmission gating pattern to assist the receiver in detecting null rate frames are provided. In another aspect, early termination of a signal transmission over a wireless communications link is provided. In an exemplary embodiment, a base station (BS) transmits power control groups (PCG's) for a frame over a forward link (FL) to a mobile station (MS) until accurate reception of the frame is acknowledged by the MS over a reverse link (RL), possibly before all PCG's of the frame are received over the FL. Possible ACK signaling methods are defined for channels associated with a cdma2000 wireless communications system. In another exemplary embodiment, techniques for reverse link early termination are also provided.
Abstract:
Techniques to increase capacity in a wireless communications system. In an aspect, systematic non-transmission, or "blanking," of minimal-rate frames transmitted in a communications system is provided. In an exemplary embodiment, eighth rate frames in a cdma2000 voice communications system are systematically substituted with null-rate frames carrying zero traffic bits. Provisions are nevertheless made for the transmission of certain designated as "critical" by, e.g., a vocoder. The receiver detects the presence of null rate or non-null rate transmissions and processes the received frames accordingly, including updating an outer loop power control only in response to non-null rate frames. Further techniques for changing the pilot transmission gating pattern to assist the receiver in detecting null rate frames are provided. In another aspect, early termination of a signal transmission over a wireless communications link is provided. In an exemplary embodiment, a base station (BS) transmits power control groups (PCG's) for a frame over a forward link (FL) to a mobile station (MS) until accurate reception of the frame is acknowledged by the MS over a reverse link (RL), possibly before all PCG's of the frame are received over the FL. Possible ACK signaling methods are defined for channels associated with a cdma2000 wireless communications system. In another exemplary embodiment, techniques for reverse link early termination are also provided.
Abstract:
In a communication system (100), a method and an accompanying apparatus provide for acknowledging reception of a packet of data. A receiver (400) at a serving base station (101) receives a message on an acknowledgement channel (340) for indicating the reception of the packet of data at a mobile station (102), and may determine an erasure of the message. A non-serving base station (160) may also receive the message on the acknowledgement channel (340) from the mobile station (102), determines a value of the message, and communicates the value of the message to the serving base station (101). The serving base station (101) changes the erasure to the value of the message, and terminates a transmission of a remainder of data units of the packet of data to the mobile station (102) when the value of the message is a positive acknowledgment from the non-serving base station (160).