Abstract:
Exemplary embodiments are directed to wireless power transfer including a plurality of antenna circuits spatially arranged and each including an antenna configured to resonate and generate a near field coupling mode region thereabout in response to a driving signal from a power amplifier. The apparatus further includes a processor configured to control activation of resonance of each of the plurality of antenna circuits. The method for wirelessly charging includes driving a signal from a power amplifier and controlling activation of resonance of a plurality of antenna circuits spatially arranged and each including an antenna configured to resonate in response to the driving signal.
Abstract:
Exemplary embodiments are directed to wireless power transfer including generating an electromagnetic field at a resonant frequency of a transmit antenna to create a coupling-mode region within a near-field of the transmit antenna. A receive antenna placed within the coupling-mode region resonates at or near the resonant frequency. The receive antenna extracts energy from a coupling between the two antennas. Signaling from the receive antenna to the transmit antenna is performed by generating a first power consumption state for the receive antenna to signal a first receive signal state and generating a second power consumption state for the receive antenna to signal a second receive signal state. Signaling from the transmit antenna to the receive antenna is performed by enabling the resonant frequency on the transmit antenna to signal a first transmit signal state and disabling the resonant frequency on the transmit antenna to signal a second transmit signal state.
Abstract:
Exemplary embodiments are directed to wireless power transfer including generating an electromagnetic field at a resonant frequency of a transmit antenna to create a coupling-mode region within a near-field of the transmit antenna. A receive antenna placed within the coupling-mode region resonates at or near the resonant frequency. The receive antenna extracts energy from a coupling between the two antennas. Signaling from the receive antenna to the transmit antenna is performed by generating a first power consumption state for the receive antenna to signal a first receive signal state and generating a second power consumption state for the receive antenna to signal a second receive signal state. Signaling from the transmit antenna to the receive antenna is performed by enabling the resonant frequency on the transmit antenna to signal a first transmit signal state and disabling the resonant frequency on the transmit antenna to signal a second transmit signal state.
Abstract:
Aspects of a protection circuit and method are disclosed. A transmit circuit generates a power transmit signal for powering the transmit antenna to generate a wireless field sufficient for wirelessly charging a device. A detection circuit senses a strength of an electromagnetic field received by the transmit antenna and further configured to generate an sense signal indicating the strength of the electromagnetic field received by the transmit antenna. A power control circuit controls a switch based at least partly on the sense signal. The power control circuit can attenuate an electrical coupling between the transmit antenna and the transmit circuit such that the received electromagnetic field is inhibited from damaging the transmit antenna or the transmit circuit.
Abstract:
Systems and methods for low loss wireless power transmission are described herein. In one aspect, a transmission coil for transmitting wireless power comprises a first and second spiral coil. Each spiral coil comprises a plurality of turns. A center of the first spiral coil to an outermost turn of the first spiral coil defines a first cross section, and a center of the second spiral coil to an outermost turn of the second spiral coil defines a second cross section. Portions of the first spiral coil along the first cross section and the second spiral coil along the second cross section have a mutual inductance with respect to a receive coil greater than 65% of a maximum mutual inductance along the first and second cross sections. The second spiral coil is counter-wound relative to the first spiral coil.
Abstract:
Exemplary embodiments are directed to wireless power transfer including generating an electromagnetic field at a resonant frequency of a transmit antenna to create a coupling-mode region within a near-field of the transmit antenna. A receive antenna placed within the coupling-mode region resonates at or near the resonant frequency. The receive antenna extracts energy from a coupling between the two antennas. Signaling from the receive antenna to the transmit antenna is performed by generating a first power consumption state for the receive antenna to signal a first receive signal state and generating a second power consumption state for the receive antenna to signal a second receive signal state. Signaling from the transmit antenna to the receive antenna is performed by enabling the resonant frequency on the transmit antenna to signal a first transmit signal state and disabling the resonant frequency on the transmit antenna to signal a second transmit signal state.
Abstract:
Systems, methods and apparatus are disclosed for a dual mode wireless power receiver. In accordance with on aspect, an apparatus for receiving wireless power is provided. The apparatus includes a first coil configured to wirelessly receive power from a first transmitter configured to generate a first alternating magnetic field having a first frequency. The apparatus further includes a second coil configured to wirelessly receive power from a second transmitter configured to generate a second alternating magnetic field having a second frequency higher than the first frequency. The second coil is positioned to enclose the first coil. A first coupling factor between the first coil and a coil of the first transmitter is higher than a second coupling factor between the second coil and a coil of the second transmitter when the first and second coils are positioned within respective charging regions of the first and second transmitters.
Abstract:
This disclosure provides systems, methods, and apparatus for filtering of a rectifier in a wireless power receiver. In one aspect a wireless power receiver apparatus is provided. The receiver apparatus includes a coil circuit configured to wirelessly receive power via a wireless field. The receiver apparatus further includes a rectifier circuit configured to provide direct-current (DC) based at least in part on the received power. The receiver apparatus further includes a first filter circuit electrically connected between the coil and the rectifier circuit and configured to reduce emissions from the rectifier circuit and configured to maintain a first impedance presented by the rectifier circuit substantially equal to a second impedance presented to the coil circuit. The receiver apparatus further includes a band-stop filter circuit configured to electrically isolate emissions from the rectifier circuit.