Abstract:
Systems and techniques are described for extended reality (XR) operations. An XR system displays virtual content using a display according to display settings. The display settings can identify, for instance, a position, orientation, and/or size of the virtual content as displayed. The environment can be viewable using the display as the virtual content is displayed by the display, for example using a see-through display or a pass-through display. The imaging system can determine, based on one or more attributes of one or both eyes of the user of the imaging system, an extent of perception of the virtual content that is displayed using the display by the user. The attributes can identify, for instance, eye position, eye movement, pupil dilation, saccades, fixations, blinking, and/or squinting. The XR system can determine, based on the extent of perception of the virtual content by the user, a modification to the display settings.
Abstract:
Systems and techniques are provided for generating virtual content. For example, a process can include obtaining an image of a physical object in a real-world environment and determining at least one attribute of the physical object in the image. The process can include determining an interface layout for virtual content based on the at least one attribute of the physical object. The process can include displaying the virtual content based on the determined interface layout. In some cases, the process can including determining an input type based on the at least one attribute of the physical object, receiving input corresponding to the input type, and controlling displayed virtual content based on the determined input type.
Abstract:
A device may be configured to determining display properties for virtual content in an environment with a plurality of physical participants by capturing an image of the environment, analyzing the captured image to identify at least one object in the environment, determining a parameter for the identified object, and determining a display property of a digital representation of virtual content based on the determined parameter. Embodiments may include negotiating display properties with other devices to generate coordinated display properties, and rendering the digital representation of the virtual content so that the remote participant appears to be in the same fixed position to all co-located participants and sized consistent with the co-located participants.
Abstract:
Various embodiments include processing devices and methods for managing multisensor inputs on a mobile computing device. Various embodiments may include receiving multiple inputs from multiple touch sensors, identifying types of user interactions with the touch sensors from the multiple inputs, identifying sensor input data in a multisensor input data structure corresponding with the types of user interactions, and determining whether the multiple inputs combine as a multisensor input in an entry in the multisensor input data structure having the sensor input data related to a multisensor input response. Various embodiments may include detecting a trigger for a multisensor input mode, entering the multisensor input mode in response to detecting the trigger, and enabling processing of an input from a touch sensor.
Abstract:
A method performed by an electronic device is described. The method includes obtaining one or more trip objectives. The method also includes obtaining one or more evaluation bases. The method further includes identifying an association between at least one site and the one or more trip objectives. The method additionally includes obtaining sensor data from the at least one site. The sensor data includes at least image data. The method also includes performing analysis on the image data to determine dynamic destination information corresponding to the at least one site. The method further includes performing trip planning based on the dynamic destination information, the one or more trip objectives, and the one or more evaluation bases. The method additionally includes providing one or more suggested routes based on the trip planning.
Abstract:
Disclosed is a mobile device that selects an authentication process based upon sensor inputs and mobile device capabilities. The mobile device may include: a plurality of sensors; and a processor. The processor may be configured to: determine multiple authentication processes based upon sensor inputs and mobile device capabilities for authentication with at least one of an application or a service provider; select an authentication process from the multiple authentication processes that satisfies a security requirement; and execute the authentication process.
Abstract:
Systems, methods, and non-transitory media are provided for tracking operations using data received from a wearable device. An example method can include determining a first position of a wearable device in a physical space; receiving, from the wearable device, position information associated with the wearable device; determining a second position of the wearable device based on the received position information; and tracking, based on the first position and the second position, a movement of the wearable device relative to an electronic device.
Abstract:
Systems, methods, and non-transitory media are provided for using a wearable ring device for extended reality (XR) functionalities. An example wearable device can include a structure defining a receiving space configured to receive a finger associated with a user, the structure including a first surface configured to contact the finger received via the receiving space; one or more sensors integrated into the structure, the one or more sensors being configured to detect a rotation of at least a portion of the structure about a longitudinal axis of the receiving space; and a wireless transmitter configured to send, to an electronic device, data based on the rotation.