Abstract:
Wireless terminals receive beacon signals from other communication devices and make transmission decisions based on priority information communicated by the beacon signals. Priority information communicated in a beacon signal includes, e.g., one of device priority, user priority and session priority. A wireless terminal compares priority information recovered from received beacon signals with its own current level of priority. A transmission decision based on received priority information includes deciding not to transmit user data when received priority information indicates a higher priority than its own priority level. Another transmission decision based on received priority information includes deciding to transmit user data when the received priority information indicates a lower priority than its own priority level. Other exemplary transmission decisions, performed as a function of priority information from beacon signals, include deciding to perform a transmission power level adjustment and deciding to terminate an ongoing communications session.
Abstract:
A method of operating a wireless communication device, comprising receiving at least a portion of a beacon signal including at least one beacon symbol from another communication device; and making a signal transmission decision based on priority information communicated by said received beacon signal portion; wherein said priority information indicates one of a device priority, user priority and session priority as well as a corresponding wireless communication device.
Abstract:
A method of operating a wireless communication device, comprising receiving at least a portion of a beacon signal including at least one beacon symbol from another communication device; and making a signal transmission decision based on priority information communicated by said received beacon signal portion; wherein said priority information indicates one of a device priority, user priority and session priority as well as a corresponding wireless communication device.
Abstract:
A method of operating a wireless communication device, comprising receiving at least a portion of a beacon signal including at least one beacon symbol from another communication device; and making a signal transmission decision based on priority information communicated by said received beacon signal portion; wherein said priority information indicates one of a device priority, user priority and session priority as well as a corresponding wireless communication device.
Abstract:
A method of operating a wireless communication device, comprising receiving at least a portion of a beacon signal including at least one beacon symbol from another communication device; and making a signal transmission decision based on priority information communicated by said received beacon signal portion; wherein said priority information indicates one of a device priority, user priority and session priority as well as a corresponding wireless communication device.
Abstract:
A mobile computing device is operated to control a vehicle. A digital key for accessing a vehicle is stored for accessing the vehicle. Profile information is associated with the digital key for configuring operation and/or use of a vehicle. The profile information may include one or more outside parameters for implementing one or more pre-entry vehicle configurations. When one or more proximity conditions are detected as being satisfied as between the mobile computing device and the vehicle, a communication is sent to the vehicle in order to cause the vehicle to implement one or more pre-entry vehicle configurations. The communication can be based on the digital key and may specify the one or more outside parameters.
Abstract:
Apparatus and methods for updating symbol information in a communication device with hardware such as a microcontroller are disclosed. The disclosed apparatus and methods employ waiting for the beginning of a symbol in a sample stream at a predetermined time. One or more programmed instructions are read at the beginning of the symbol, and then symbol information is updated based on the one or more programmable instructions and setting a time for a beginning of a next symbol. The programmed instructions consist of instruction code words that are executed by a dedicated microcontroller or similar hardware, which affords flexibility for updating symbol information, particularly for multimode communication devices operable across multiple communication technologies.
Abstract:
In response to detecting the entry condition, a determination is made as to when multiple mobile computing devices are present within the vehicle. An occupancy zone is determined for each multiple mobile computing device that is determined as being present within the vehicle. Profile information is determined for each mobile computing device. At least one of an operational or usage facet of the vehicle can be configured at each occupancy zone in which one of the mobile computing devices is determined to be present. The operational or usage facet of the vehicle at a location of each occupancy zone can be based at least in part on the profile information determined from the mobile computing device that is deemed to be present at that occupancy zone.
Abstract:
In response to detecting the entry condition, a determination is made as to when multiple mobile computing devices are present within the vehicle. An occupancy zone is determined for each multiple mobile computing device that is determined as being present within the vehicle. Profile information is determined for each mobile computing device. At least one of an operational or usage facet of the vehicle can be configured at each occupancy zone in which one of the mobile computing devices is determined to be present. The operational or usage facet of the vehicle at a location of each occupancy zone can be based at least in part on the profile information determined from the mobile computing device that is deemed to be present at that occupancy zone.