Abstract:
A method performed by an electronic device is described. The method includes determining a haziness confidence level based on multiple modalities. The method also includes determining whether to perform an action based on the haziness confidence level. The method may include performing the action, including performing haziness reduction based on the haziness confidence level.
Abstract:
A method for deformable expression detection is disclosed. For each pixel in a preprocessed image, a sign of a first directional gradient component and a sign of a second directional gradient component are combined to produce a combined sign. Each combined sign is coded into a coded value. An expression in an input image is detected based on the coded values.
Abstract:
Apparatus and methods for facial detection are disclosed. A plurality of images of an observed face is received for identification. Based at least on two or more selected images of the plurality of images, a template of the observed face is generated. In some embodiments, the template is a subspace generated based on feature vectors of the plurality of received images. A database of identities and corresponding facial data of known persons is searched based at least on the template of the observed face and the facial data of the known persons. One or more identities of the known persons are selected based at least on the search.
Abstract:
The techniques described in this disclosure are directed to interpolating pixel values. In some examples, the techniques interpolate a pixel value for an interpolated center pixel based on pixel values of pixel that reside on diagonal lines that are orthogonal to one another. The techniques may determine first order derivative values and, in some examples, second order derivative values to determine which pixels to utilize to interpolate the pixel values for the interpolated center pixel. The techniques may similarly determine pixel values for non-center interpolated pixels using orthogonal vertical and horizontal lines.
Abstract:
In a particular illustrative embodiment, a method of determining a viewpoint of a person based on skin color area and face area is disclosed. The method includes receiving image data corresponding to an image captured by a camera, the image including at least one object to be displayed at a device coupled to the camera. The method further includes determining a viewpoint of the person relative to a display of the device coupled to the camera. The viewpoint of the person may be determined by determining a face area of the person based on a determined skin color area of the person and tracking a face location of the person based on the face area. One or more objects displayed at the display may be moved in response to the determined viewpoint of the person.
Abstract:
Techniques and systems are provided for authenticating a user of a device. For example, input biometric data associated with a person can be obtained. A similarity score for the input biometric data can be determined by comparing the input biometric data to a set of templates that include reference biometric data associated with the user. The similarity score can be compared to an authentication threshold. The person is authenticated as the user when the similarity score is greater than the authentication threshold. The similarity score can also be compared to a learning threshold that is greater than the authentication threshold. A new template including features of the input biometric data is saved for the user when the similarity score is less than the learning threshold and greater than the authentication threshold.
Abstract:
A method for determining a region of an image is described. The method includes presenting an image of a scene including one or more objects. The method also includes receiving an input selecting a single point on the image corresponding to a target object. The method further includes obtaining a motion mask based on the image. The motion mask indicates a local motion section and a global motion section of the image. The method further includes determining a region in the image based on the selected point and the motion mask.
Abstract:
A method for adjusting pixel colors between image frames includes scanning, at a processor, a first image frame of a sequence of image frames. The method also includes determining a grayscale threshold based on characteristics of the first image frame to identify gray pixel candidates in the first image frame. The method further includes adjusting a pixel value of each pixel in the first image frame based on a chromatic adaptation transform estimation. The chromatic adaptation transform estimation is based on the gray pixel candidates. The grayscale threshold may be computed for each image frame in the sequence of image frames.
Abstract:
A method performed by an electronic device is described. The method includes determining a local motion pattern by determining a set of local motion vectors within a region of interest between a previous frame and a current frame. The method also includes determining a global motion pattern by determining a set of global motion vectors between the previous frame and the current frame. The method further includes calculating a separation metric based on the local motion pattern and the global motion pattern. The separation metric indicates a motion difference between the local motion pattern and the global motion pattern. The method additionally includes tracking an object based on the separation metric.
Abstract:
In general, this disclosure describes techniques for providing a gesture-based user interface. For example, according to some aspects of the disclosure, a user interface generally includes a camera and a computing device that identifies and tracks the motion of one or more fingertips of a user. In some examples, the user interface is configured to identify predefined gestures (e.g., patterns of motion) associated with certain motions of the user's fingertips. In another example, the user interface is configured to identify hand postures (e.g., patterns of showing up of fingertips). Accordingly, the user can interact with the computing device by performing the gestures.