Abstract:
The techniques of this disclosure are applicable to backlight display devices. For such devices, the backlight may have different backlight intensity settings in order to promote power conservation. The techniques of this disclosure may apply different adjustments to the display, depending on the backlight intensity setting. In one example, different color correction matrices may be applied for different backlight settings in order to achieve desirable adjustments in the device at the different backlight settings. The adjustments described herein may address chrominance shifts due to different backlight settings as well as cross-talk between color channels. The techniques may also be applicable to organic light emitting diode (OLED) displays that have different luminance settings, and some described techniques may be applicable to displays that have static or fixed luminance output.
Abstract:
Described are a system and method to calibrate displays using a spectral-based colorimetrically calibrated multicolor camera. Particularly, discussed are systems and methods for displaying a multicolor calibration pattern image on a display unit, capturing the multicolor calibration pattern image with a multicolor camera having a plurality of image sensors, with each image sensor configured to capture a predetermined color of light, comparing a set of reference absolute XYZ coordinates of a set of colors from the multicolor calibration pattern with a set of measured XYZ color coordinates captured using the colorimetrically calibrated camera, and calibrating the display unit based on the comparison between the reference coordinates and the measured coordinates.
Abstract:
The techniques of this disclosure are applicable to backlight display devices. For such devices, the backlight may have different backlight intensity settings in order to promote power conservation. The techniques of this disclosure may apply different adjustments to the display, depending on the backlight intensity setting. In one example, different color correction matrices may be applied for different backlight settings in order to achieve desirable adjustments in the device at the different backlight settings. The adjustments described herein may address chrominance shifts due to different backlight settings as well as cross-talk between color channels. The techniques may also be applicable to organic light emitting diode (OLED) displays that have different luminance settings, and some described techniques may be applicable to displays that have static or fixed luminance output.