Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier for sets of one or more nodes such as restricted access points and access terminals that are authorized to receive service from the restricted access points. Access control may be provided by operation of a restricted access point and/or a network node. In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
Systems and methodologies are described that facilitate attaching cell relays to a wireless network. During the attachment procedure, a relay eNB can request assignment of an identifier, or a portion thereof, from a donor eNB for subsequent packet routing to the relay eNB. This can occur through one or more intermediary relay eNBs, where present. Donor eNB can assign an identifier or portion thereof (or confirm/deny an explicit identifier request from the relay eNB) and can forward establishment information downstream to the relay eNB. Donor eNB and intermediary relay eNBs, where present, can store the identifier for subsequent use in routing packets to the relay eNB. The identifier can be a terminal endpoint identifier (TEID) utilized in a tunneling protocol, a relay identifier utilized in a relay protocol, and/or the like.
Abstract:
Systems and methodologies are described that facilitate packet routing among relay eNBs in a wireless network. A donor eNB can create at least a portion of a tunnel endpoint identifier (TEID) for a relay eNB communicating with a UE or other device. In addition, the relay eNB communicating with the UE can create a portion of the TEID. Upon receiving packets with a TEID, the donor eNB can route the packets to downstream eNBs based on the portion of the TEID that it created. Other downstream eNBs can continue to route packets to next hop eNBs based on the portion of the TEID created by the donor eNB or the downstream eNBs themselves. The relay eNB communicating with the UE can route packets to the UE based on the portion of the TEID it created and/or the portion created by the donor eNB.
Abstract:
Systems and methodologies are described that facilitate providing relay nodes in wireless networks. In particular, cluster nodes, which can be regular eNBs, can provide wireless network access to the relay nodes over a backhaul link, and the relay nodes can offer access to devices or other relay nodes to expand network coverage and/or provide increased throughput. User equipment (UE) relays can function as UEs according to a cluster node such that UE relays receive network addressing and can tunnel communications through the cluster node using the backhaul link. Cell relays can function as a cell of the cluster node, such that transport layer communications terminate at the cluster node. In this regard, cell relays can define transport layers to use in communicating with the cluster nodes over the backhaul and with other devices over a provided access link.
Abstract:
Depending on channel conditions, a variable abort timer can be set in relation to wireless communication of data packets. Additionally, available buffer size can be evaluated and used to set a length of the variable abort timer. When a packet sequence is sent, packets can become lost in communication. When a lost packet is recognized, the timer can be initiated and a request for re-transmission of the lost packet can is sent. If the lost packet does not arrive during running of the variable abort timer, then the packet sequence can be processed without the missing packet.
Abstract:
Methods and apparatus for formatting headers for data packets within a communication frame for use in a wireless communication system are presented. Formatting headers includes determining the size of a wireless communication frame, and formatting the payloads and associated headers within the communication frame according to the determined size. This formatting includes placing headers at the beginning of the frame before the data packets corresponding to the headers to optimize processing of the headers at a receiver. Formatting may also include formatting the headers according to a first format within the frame when the determined frame size is below a predetermined size to optimize the size of the headers, and formatting according to a second format within the frame when the size of the data packet is equal to or greater than the predetermined size to optimize processing for frames having large data packets.
Abstract:
An access point is configured based on acquired information. An access point may be configured based on the configuration(s) of at least one other access point. An identifier to be transmitted by an access point may be selected based on the identifier(s) transmitted by at least one other access point. An access point may configure itself with assistance from a configuration server. For example, the access point may send information such as the location of the access point to a configuration server and the configuration server may respond with a list of neighboring access points for that access point. A configuration server may provide configuration information to an access point based on the location of the access point. A configuration server also may direct an access point to a different configuration server.
Abstract:
Systems and methodologies are described that facilitate utilizing restriction codes in rejecting connection requests with restricted association access points to indicate a reason for the rejection. Mobile devices can maintain a list of accessible access points and/or groups of access points, which can be consulted during cell reselection to ensure unsuitable restricted association access points are not utilized in cell reselection. Based on receiving a rejection code from a restricted association access point, a mobile device can remove the access point, or a related group, from its maintained list so that subsequent reselection attempts avoid the access point and/or access points in the related group.
Abstract:
Systems, methods and apparatus for facilitating handover control using resource reservation with frequency reuse are provided. In one embodiment, the method can include: transmitting scheduling information for the transmission of information on frequencies corresponding to an unreserved portion of a frequency band. The method can also include transmitting scheduling information for the transmission of information on frequencies corresponding to a reserved portion of the frequency band. A frequency reuse scheme can be employed over the frequencies corresponding to the reserved portion of the frequency band, and the information transmitted on the frequencies corresponding to the reserved portion of the frequency band can be handover signalling information.
Abstract:
Systems and methodologies are described that facilitate performing intra-cluster and inter-cluster reselection for relay eNBs. In intra-cluster reselection, a relay eNB can reselect a disparate relay eNB and indicate its identifier in a bearer list update message. The disparate relay eNB and upstream eNBs (including the donor eNB) can update routing tables based at least in part on the identifier. In addition, the relay eNB can provide identifiers of downstream relay eNBs to facilitate updating routing tables for those identifiers as well. In an inter-cluster reselection, relay eNBs can release connection to downstream relay eNBs and re-attach to a wireless network to receive an identifier from a new donor eNB in the new cluster. Alternatively, the relay eNB can request an identifier from the donor eNB during reselection, notify downstream relay eNBs of the reselection, and/or request identifiers for one or more downstream relay eNBs.