Abstract:
Seamless communication handoff is achieved by establishing a protocol tunnel to route leftover packets between network access nodes during the handoff. For example, in a mobile IP-based system, a mobile node may perform a handoff from a first access node that is associated with a first routing node to a second access node that is associated with a second routing node. To prevent the loss of any packets that may be in route for delivery to or from the first routing node during the handoff, the mobile node establishes a protocol tunnel with the first access node via the second access node. On the forward-link, packets being delivered from the first routing node are routed over the protocol tunnel to the second access node and then to the mobile node. On the reverse-link, packets being sent to the first routing node are routed over the protocol tunnel from the mobile node to the second access node and then to the first routing node. In conjunction with these operations, the mobile node concurrently maintains separate IP interfaces for the routing nodes. In addition, steps are taken to ensure that packets are routed to the appropriate IP interface during the handoff.
Abstract:
Described herein is methodologies for efficient utilization of backhaul resources of a network for delivering paging data to an access terminal (AT) without sacrificing delay performance. A location that buffers data for an AT can be adaptively changed based on factors such as the location of the AT, applications utilized by the AT, and a recent activity level of the AT. To facilitate this determination, an AT can be configured with one or more registration boundaries. An AT can be configured with a small registration radius such that if the AT does not move outside of the small registration radius, data can be delivered directly to a data attachment point for the AT. If the AT moves outside of the small registration radius, the registration radius can be switched to a large registration radius and the access gateway can instead locally buffer data for the AT.
Abstract:
A method and apparatus are disclosed for negotiating and managing one or more personalities in a wireless communications system. The method comprises advertising one or more supported initial protocol set identifiers. Furthermore, the method comprises selecting a starting initial protocol set identifier from the advertised initial protocol set identifiers. In addition, the method comprises establishing a session based on the selected starting initial protocol set identifier. The method also comprises establishing a connection between an access terminal and an access network based on the selected initial protocol set identifier.
Abstract:
A method of wireless communication includes identifying at least one current resource for which a coexistence issue is present. The method also includes submitting a message to a base station that includes information indicative of the coexistence issue for the current resource(s). The handover request may include information indicative of the resource for which the coexistence issue is present and/or a desired future resource.
Abstract:
Methods and apparatuses are provided that facilitate routing of messages of a positioning protocol, such as long term evolution (LTE) positioning protocol annex (LPPa). A positioning server can determine a network area identifier of one or more messages based at least in part on an identifier of a base station associated with the one or more messages. Based at least in part on the network area identifier, the positioning server can provide the one or more messages to an intermediate network node corresponding to the one or more base stations, such as a mobility management entity (MME). MME can similarly provide the one or more messages to an optional gateway between it and the one or more base stations based at least in part on receiving the network area identifier in the one or more messages. In addition, a base station can update positioning information with the positioning server.
Abstract:
Aspects are disclosed for facilitating a timing alignment in a multicarrier system. In one aspect, at least one downlink timing associated with at least one downlink carrier is determined, and an uplink timing associated with an uplink group of carriers is ascertained based on at least one downlink timing and a timing offset associated with the uplink group of carriers. Each of the uplink group of carriers is then transmitted within a threshold value of the uplink timing. In another aspect, a downlink communication is transmitted to a wireless terminal via at least one downlink carrier. This embodiment further includes assigning a timing offset to an uplink group of carriers, and providing the timing offset to the wireless terminal via the at least one downlink carrier. An uplink communication is then received via the uplink group of carriers according to the timing offset.
Abstract:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
Abstract:
Confusion resulting from assigning the same node identifier to multiple nodes is resolved through the use of confusion detection techniques and the use of unique identifiers for the nodes. In some aspects an access point and/or an access terminal may perform operations relating to detecting confusion and/or providing a unique identifier to resolve confusion.
Abstract:
A method and apparatus for generating a cryptosync is disclosed that generates a cryptosync with the desired variability without the overhead in complexity and size of prior cryptosyncs. The cryptosync is generated from a combination of fields including fields relating to the segmentation and reassembly of the data packets at a transmitting terminal and a receiving terminal. The resultant cryptosync does not repeat during the use of a particular security key.
Abstract:
The disclosure relates to techniques for maintaining minimum quality of service (QoS) communication sessions with a wireless communication device (WCD) over a data-based communication network during a hard handoff between access networks for the WCD. More specifically, the techniques determine whether a closed connection between the WCD and a first access network during a minimum QoS communication session is due to a hard handoff between the first access network and a second access network. In the case of a hard handoff, the techniques maintain open QoS reservations associated with data flows included in the minimum QoS communication session for a predetermined period of time to enable a new connection to be established between the WCD and a second access network. The techniques described herein may especially useful when performing a voice over Internet Protocol (VoIP) call over an Evolution - Data Optimized (EVDO) communication network.