Abstract:
Computing resources consumed in performing computerized sequence-mining can be reduced by implementing some examples of the present disclosure. In one example, a system can determine weights for data entries in a data set and then select a group of data entries from the data set based on the weights. Next, the system can determine a group of k-length sequences present in the selected group of data entries by applying a shuffling algorithm. The system can then determine frequencies corresponding to the group of k-length sequences and select candidate sequences from among the group of k-length sequences based on the frequencies thereof. Next, the system can determine support values corresponding to the candidate sequences and then select output sequences from among the candidate sequences based on the support values thereof. The system may then transmit an output signal indicating the selected output sequences an electronic device.
Abstract:
A computing system receives historical data. The historical data comprises physical actions taken in an experiment in a physical environment. The experiment comprises user-defined stages. The historical data comprises a recorded outcome, according to user-defined performance indicator(s) related to the user-defined stages, for each physical action taken in the experiment. The system generates, by a discrete event simulator, a computing representation of a simulated environment of the physical environment. The simulated environment comprises processing stages. The system obtains simulation data. The simulation data comprises simulated actions taken by the discrete event simulator. The simulation data comprises a predicted outcome, according to user-defined performance indicator(s) related to the processing stages, for each simulated action taken by the discrete event simulator. The system validates accuracy of the discrete event simulator at predicting the recorded outcome in the experiment. The system trains a computing agent according to a sequential decision-making algorithm.
Abstract:
A computing system obtains image data representing images. Each of the images is captured at different time points of a physical environment. The physical environment comprises a first object and a second object. The computing system executes a control system to augment the physical environment. The control system detects a group forming in the images. The control system tracks an aspect of a movement, of a given object, in the group. The control system simulates the physical environment and the movement, of the given object, in the group in a simulated environment. The control system evaluates simulated actions in the simulated environment for a predefined objective for the physical environment. The predefined objective is related to an interaction between objects in the group. The control system generates based on evaluated simulated actions and autonomously from involvement by any user of the control system, an indication to augment the physical environment.
Abstract:
Systems and methods for determining an optimal splitting scheme for a node in a classification decision tree. A computing system may receive input data related to a decision tree to be generated from a data set. The input data identifies a target attribute of the data set and a set of candidate attributes of the data set to be used as nodes in the decision tree. The computing system may determine, using a clustering algorithm and the set of candidate attributes, a number of potential splitting schemes to be used to split a node in the decision tree. The computing system may calculate a splitting measurement for each of the plurality of potential splitting schemes. The computing system may select an optimal splitting scheme from the plurality of potential splitting schemes for each node in the decision tree based on the splitting measurement.
Abstract:
Systems and methods for data reduction of a data set are included. A computing system may group data points in a data set into a number of data point bubbles represented by a number of representative points. A data point bubble may include a one or more data points from the data set and a representative point from the data set. The computing system may calculate a cluster assignment for the representative point by executing a clustering algorithm using the number of representative points.