Abstract:
An imaging device may include an image sensor having an array of image pixels. The array of image pixels may include one or more infrared pixels that are configured to detect infrared light. The infrared pixels may include reflective structures for increasing quantum efficiency in the infrared spectral range. The reflective structures may include first and second parallel structures formed on opposing sides of a photodiode in an infrared pixel. The reflective structures may be partially transparent to infrared light and non-transparent to visible light. The reflective structures may form an optical cavity so that infrared light that enters an infrared pixel is reflected back and forth between the reflective structures until it is absorbed by the photodiode in the infrared pixel. Reflective structures may also be formed between infrared filters and color filters to suppress optical crosstalk between infrared pixels and color pixels.
Abstract:
Resonance enhanced color filter arrays are provided for image sensors. Resonance cavities formed with color filter materials that enhance the color filtering capabilities of the color filter materials. Resonance enhanced color filter arrays may be provided for back side illumination image sensors and front side illumination image sensors. A layer of high refractive index material or metamaterial may be provided between a microlens and a color filter material to serve as a first partially reflecting interface for the resonance cavity. An optional layer of high refractive index material or metamaterial may be provided between color filter material and a substrate. In front side illumination image sensors, color filter material may be provided in a light guide structure that extends through interlayer dielectric. The color filter material in the light guide structure may form at least part of a resonance cavity for a resonance enhanced color filter array.
Abstract:
An image sensor operable in global shutter mode may include an array of image pixels. Each image pixel may include a photodiode for detecting incoming light and a separate storage diode for temporarily storing charge. To maximize the efficiency of the image pixel array, image pixels may include light guide structures and light shield structures. The light guide structures may be used to funnel light away from the storage node and into the photodiode, while the light shield structures may be formed over storage nodes to block light from entering the storage nodes. The light guide structures may fill cone-shaped cavities in a dielectric layer, or the light guide structures may form sidewalls having a ring-shaped horizontal cross section. Metal interconnect structures in the dielectric layer may be arranged in concentric annular structures to form a near-field diffractive element that funnels light towards the appropriate photodiode.
Abstract:
An image sensor may include an array of pixels. Pixels in the array may include a photodiode that converts incident light into electrical charge and a charge storage region for storing the electrical charge before it is read out from the pixel. Pixels in the array may include a microlens formed over the photodiode that directs light onto the photodiode. Pixels in the array may include an additional array of microlenses between the microlens and the photodiode. The additional array of microlenses may direct light away from the charge storage region to prevent charge stored at the charge storage region from being affected by light that is not incident upon the photodiode. The image sensor may be a backside illuminated image sensor that operates in a global shutter mode.
Abstract:
An image sensor with an array of image sensor pixels is provided. Each image pixel may include a photodiode and associated pixel circuits formed in the front surface of a semiconductor substrate. Buried light shielding structures may be formed on the back surface of the substrate to prevent pixel circuitry that is formed in the substrate between two adjacent photodiodes from being exposed to incoming light. The buried light shielding structures may be lined with absorptive antireflective coating material to prevent light from being reflected off the surface of the buried light shielding structures. Forming buried light shielding structures with absorptive antireflective coating material can help reduce optical pixel crosstalk and enhance signal to noise ratio.
Abstract:
A front-side illuminated image sensor with an array of image sensor pixels is provided. Each image pixel may include a photodiode, transistor gate structures, shallow trench isolation structures, and other associated pixel circuits formed in a semiconductor substrate. Buried light shielding structures that are opaque to light may be formed over regions of the substrate to prevent the transistor gate structures, shallow trench isolation structures, and the other associated pixel circuits from being exposed to stray light. Buried light shielding structures formed in this way can help reduce optical pixel crosstalk.
Abstract:
An image sensor including a semiconductor layer. A light absorber layer couples with the semiconductor layer at a pixel of the image sensor and absorbs incident light to substantially prevent the incident light from entering the semiconductor layer. The light absorber layer heats a depletion region of the semiconductor layer in response to absorbing the incident light, creating electron/hole pairs. The light absorber layer may include one or more narrow bandgap materials.
Abstract:
An image sensor with an array of image sensor pixels is provided. Each pixel may include a photodiode and associated pixel circuits formed in a semiconductor substrate. Buried light shields may be formed on the substrate to present pixel circuitry that is formed in the substrate between two adjacent photodiodes from being exposed to incoming light. Metal interconnect muting structures may be formed over the buried light shields. In one embodiment, light blocking structures may be formed to completely seal the interconnect routing structures. The light blocking structures may be formed on top of the buried light shields or on the surface of the substrate. In another embodiment, planar light blocking structures that are parallel to the surface of the substrate may be formed between metal routing layers to help absorb stray light. Light blocking structures formed in these ways can help reduce optical crosstalk and enhance global shutter efficiency.