Abstract:
A method of joining an amorphous alloy material to a heterogeneous material and a composite formed by the same are provided. The method comprises steps of: placing a pre-formed piece made of one of the amorphous alloy material and the heterogeneous material into a mold; heating the other of the amorphous alloy material and the heterogeneous material to a predetermined temperature, and casting the other of the amorphous alloy material and the heterogeneous material into the mold to form a transition connection part joining the amorphous alloy material to the heterogeneous material and having a fusion welded structure, a microstructure reinforcing connection structure and a composite connection structure; and cooling the amorphous alloy material and the heterogeneous material at a rate higher than a critical cooling rate of the amorphous alloy material to obtain a composite formed by joining the amorphous alloy material to the heterogeneous material by the transition connection part.
Abstract:
A doped tin oxide contains a tin oxide and an oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. Based on the total amount of the doped tin oxide,the tin oxide is about90-99mol%,and the oxide of the doping element is about1-10mol%. A polymer article containing the doped tin oxide,an ink composition containing the doped tin oxide,and method for preparing them are also provided.In addition,a method for selective metallization of the polymer article and a method for selective metallization of an insulating substrate are provided.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
A license plate device comprises: a first shell (110) having a transparent region (111) forming a first predetermined logo pattern and a non transparent region (112); a second shell (150) fixedly connected with the first shell (110), with a sealed accommodating space; a light guide plate (120) disposed between the bottom plate (130) and the first shell (110) which is formed with an accommodating groove (122); and a circuit board (140) disposed between the light guide plate (120) and the second shell (150) which is formed with an illuminating element (141) on a surface thereof facing toward the light guide plate (120) to be accommodated in the accommodating groove (122), in which the light guide plate (120) is formed with a plurality of microprism structures (121) configured to transmit at least a part of light emitted by the illuminating element (141) penetrating through the light guide plate (120) from a face of the light guide plate (120) facing the first shell (110).
Abstract:
A sealing assembly of a battery, a method for fabricating the same and a lithium ion battery may be provided. The sealing assembly may comprise: a ceramic ring (3) having a receiving hole (31); a metal ring (4) fitted over the ceramic ring (3); and a core column (2) formed in the receiving hole (31) which comprises a metal-ceramic composite (21).
Abstract:
A metal shell includes a metal body (1) having a through hole; a plastic member (4) disposed on the metal body (1) at a position of the through hole (3); and a NFC antenna (2) disposed on a surface of the plastic member (4) and configured to receive a signal via the through hole (3). An area of a part of the NFC antenna (2) overlapping the through hole (3) is larger than one third of an area of the NFC antenna (2). A cell phone including the metal shell is also provided.
Abstract:
A metal-ceramic composite includes a ceramic substrate and a metallic composite. A groove is formed in a surface of the ceramic substrate and the metallic composite is filled in the groove. The metallic composite includes a Zr based alloy-A composite. A includes at least one selected from a group consisting of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC and ZrO 2 . Based on the total volume of the Zr based alloy-A composite, the content of A is about30%to about70%by volume.A method for preparing the metal-ceramic composite is also provided.
Abstract:
A laser processing apparatus and a laser processing method are provided. The laser processing apparatus includes: a robot (1) having a fixture for carrying a product and configured to carry and move the product; a laser (2) configured to fabricate a pattern on the product; a detector (3) configured to detect a current location of the fixture; and a controller connected with the robot (1), the laser (2) and the detector (3) respectively, and configured to store a standard location of the fixture, to compare the current location of the fixture with the standard location of the fixture to obtain a first comparison result, and to control the robot (1) to move according to the first comparison result so as to adjust the current location of the fixture. The apparatus and the method are simple to implement, greatly broaden the application range and prospect of the SBID (Super- energy Beam Induced Deposition) technology, which facility the product quality control and improve the production efficiency.
Abstract:
A skin removing device comprises: a cutting assembly adapted to cut skin; an adjusting assembly adapted to adjust a cutting area of the cutting assembly and configured to fixedly couple with the cutting assembly; a handle-switch assembly comprising a handle assembly configured to fixedly couple with a first end of the adjusting assembly, and a switch assembly configured to mount on the handle assembly; a motor-housing assembly adapted to provide a cutting driving force and configured to detachably disposed in the handle assembly; and a connecting assembly adapted to connect the cutting assembly with the motor-housing assembly.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises steps of: A) forming a nanopore in a surface of a metal sheet; and B) melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore, and then injection molding the thermoplastic resin onto the surface of the metal sheet, in which the thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a polycarbonate, and the polyolefin resin has a melting point of about 65ºC to about 105ºC.