Abstract:
A touch detecting assembly, a touch sensitive device, and a portable electronic apparatus are provided. The touch detecting assembly (100) comprises: a substrate (1); and a plurality of induction units (2) disposed on the substrate (1) and not intersecting with each other, each induction unit (2) comprising an induction body (20), and a first electrode (21) and a second electrode (22) connected with the induction body (20) respectively. Each induction body (20) has a plurality of empty parts (24), and the plurality of empty parts (24) are arranged in a predetermined pattern to define a current passage (25) for increasing a resistance between the first electrode (21) and the second electrode (22).
Abstract:
A fingerprint detection circuit and an electronic device are provided. The fingerprint detection circuit, configured to apply an excitation signal to a finger so as to generate a finger capacitor, the fingerprint detection circuit including: a signal amplifier having a negative input terminal connected with the finger capacitor, a positive input terminal connected with a voltage reference terminal, and an output terminal to output an output voltage according to a capacitance value of the finger capacitor; a capacitor; and a switch unit connected with the negative input terminal and the output terminal of the signal amplifier respectively, and configured to control the capacitor to be connected between the negative input terminal and the output terminal of the signal amplifier, such that the output voltage has a non-linear relationship with the capacitance value of the finger capacitor.
Abstract:
a method and an apparatus for adjusting an excitation voltage of a fingerprint detection chip (100) and a fingerprint detection chip (100). The fingerprint detection chip (100) has a signal transmitting unit, a first detection area (110) and a second detection area (120), each of the first detection area (110) and the second detection area (120) has a plurality of detection units (121), the first detection area (110) is configured to detect a fingerprint capacitance, a metal ring (200) is located on the fingerprint detection chip (100), the metal ring (200) at least partially covers the second detection area (120). Improving efficiency of fingerprint detection.
Abstract:
A fingerprint detection circuit and a corresponding method are provided. The circuit (100) includes a fingerprint collecting module (102) and a processing module (104). The fingerprint collecting module (102) includes a plurality of collecting units (112), and each collecting unit (112) has a regulation voltage and is configured to output a first voltage or a second voltage according to a capacitance value of one of ridge capacitors, a capacitance value of one of ridge capacitors and the regulation voltage. The processing module (104) is configured to amplify the first and second voltages by a predetermined factor, to calculate a difference between the amplified first and second voltages, and to determine whether the difference is greater than or equal to the predetermined threshold. If no, the processing module (104) adjusts at least one parameter, and configures the fingerprint detection circuit (102) using at least one adjusted parameter.
Abstract:
A fingerprint detection circuit and an electronic device are provided. The fingerprint detection circuit, configured to apply an excitation signal to a finger so as to generate finger capacitors, the fingerprint detection circuit including: a signal amplifier having a negative input terminal connected with one of the finger capacitors, a positive input terminal connected with a ground terminal, and an output terminal to output an output voltage according to a capacitance value of one of the finger capacitors; a capacitor, connected between the negative terminal and the output terminal of the signal amplifier; a rheostat; and a switch unit connected with the rheostat in series, and configured to control the rheostat to be connected with the capacitor in parallel, such that the output voltage has a non-linear relationship with the capacitance value of one of the finger capacitors.
Abstract:
A fingerprint detection circuit and an electronic device are provided. The fingerprint detection circuit is configured to apply an excitation signal to a finger so as to generate a finger capacitor, and the fingerprint detection circuit includes: a signal amplifier having a negative input terminal connected with the finger capacitor, a positive input terminal connected with a voltage reference terminal, and an output terminal to output an output voltage according to a capacitance value of the finger capacitor; a capacitor; and a switch unit connected with the negative input terminal and the output terminal of the signal amplifier respectively, and configured to control the capacitor to be connected between the negative input terminal and the output terminal of the signal amplifier, such that the output voltage has a non-linear relationship with the capacitance value of the finger capacitor.
Abstract:
The present disclosure provides a fingerprint identification method and apparatus. The fingerprint identification method includes obtaining a to-be-identified fingerprint image and extracting first characteristic points of the to-be-identified fingerprint image; determining whether a number of the first characteristic points of the to-be-identified fingerprint image is less than a predetermined threshold; when the number of the first characteristic points of the to-be-identified fingerprint image is less than the predetermined threshold, selecting a fingerprint template image according to the number of the first characteristic points; extracting second characteristic points in the fingerprint template image matching with the first characteristic points of the to-be-identified fingerprint image; overlapping the fingerprint template image with the to-be-identified fingerprint image according to the first characteristic points of the to-be-identified fingerprint image and the second characteristic points of the fingerprint template image to form an overlapped image; determining a valid coincidence region between the to-be-identified fingerprint image and the fingerprint template image in the overlapped image; and determining whether the to-be-identified fingerprint image matches the fingerprint template image according to the valid coincidence region to generate a matching result and performing fingerprint identification based on the matching result. According to the disclosed method, fingerprint identification with less characteristic points can be realized, thus improving the success rate of the fingerprint identification, and reducing the identification error rate.
Abstract:
A fingerprint detection circuit and an electronic device are provided. The fingerprint detection circuit is configured to apply an excitation signal to a finger so as to generate finger capacitors, and the fingerprint detection circuit includes: a signal amplifier having a negative input terminal connected with one of the finger capacitors, a positive input terminal connected with a ground terminal, and an output terminal to output an output voltage according to a capacitance value of the one of the finger capacitors; a capacitor connected between the negative terminal and the output terminal of the signal amplifier; a rheostat; and a switch unit connected with the rheostat in series and configured to control the rheostat to be connected with the capacitor in parallel, such that the output voltage has a non-linear relationship with the capacitance value of the one of the finger capacitors.
Abstract:
The present disclosure provides a method and an apparatus for adjusting an excitation voltage of a fingerprint detection chip and a fingerprint detection chip. The method for adjusting an excitation voltage of a fingerprint detection chip includes: S1, transmitting an excitation signal to the metal ring by the signal transmitting unit, so as to detect a capacitance value of a coupling capacitance formed between the plurality of detection units in the second detection area and the metal ring; or enabling the metal ring grounded, and applying an excitation signal to the plurality of detection units in the second detection area by the signal transmitting unit, so as to detect a capacitance value of a coupling capacitance formed between the plurality of detection units in the second detection area and the metal ring; and S2, adjusting an excitation voltage of the first detection area according to the capacitance value of the coupling capacitance formed between the plurality of detection units in the second detection area and the metal ring.
Abstract:
The present disclosure provides a fingerprint detection circuit and method. The circuit includes a fingerprint collecting module and a processing module. The fingerprint collecting module includes a plurality of collecting units, and each collecting unit has a regulation voltage and is configured to output a first voltage or a second voltage according to a capacitance value of one of ridge capacitors, a capacitance value of one of ridge capacitors and the regulation voltage. The processing module is configured to amplify the first and second voltages by a predetermined factor, to calculate a difference between the amplified first and second voltages, and to determine whether the difference is greater than or equal to the predetermined threshold. If no, the processing module adjusts at least one parameter, and configures the fingerprint detection circuit using at least one adjusted parameter.