Abstract:
The present invention discloses an apparatus and method for controlling energy feedback for electric vehicles. The method includes: acquiring an accelerator-pedal travel value, a brake-pedal travel value and a current vehicle speed value; determining whether the brake-pedal travel value is equal to 0%, and calculating a feedback torque based on the current vehicle speed value and the brake-pedal travel value if the brake-pedal travel value is not equal to 0%; or comparing the accelerator-pedal travel value with a given feedback value if the brake-pedal travel value is equal to 0%; and calculating a feedback torque based on the current vehicle speed value if the accelerator-pedal travel value is not greater than the given feedback value; and converting mechanical energy generated by the feedback torque T into electric energy, and transmitting the electric energy to battery of the electric vehicle for storing. According to the present invention, the endurance mileage of electric vehicle may be effectively prolonged and the utilization efficiency of battery is improved.
Abstract:
A method and an apparatus for controlling output torque of a motor for an electric vehicle in downhill mode. the method comprises following steps: detecting a tilt angle value θ, a current vehicle speed value V and an accelerator-pedal travel value Gain of the vehicle, determining whether the vehicle is in downhill mode or not, and if the result is positive, then calculating a downhill slip torque T1 of the vehicle under the tilt angle value θ, obtaining a maximum output torque T2, calculating an output torque T of the motor based on T1, T2, Gain and a given vehicle speed delimitative value V ref , and controlling the motor to output the calculated output torque T. The present invention ensures the vehicle speed not too high by controlling the output torque of an electric vehicle in downhill mode, even if the brake-pedal travel is zero.
Abstract:
A clutchless transmission apparatus and control method thereof. The transmission apparatus comprises a motor(10) and a transmission(20), said motor(10) is connected to said transmission(20) and supplies power to said transmission(20) via an input shaft of the transmission(20), wherein said apparatus further comprises a control device(30), which is electrically connected to said motor(10) and said transmission(20), wherein said control device(30) is configured to determine whether a gear-position shifting is required based on rotation speed of said transmission(20), if a gear-position shifting is required, regulates torque of said motor(10) to control said transmission(20) to disengage, and then regulates the rotation speed of said motor(10) based on the rotation speed of said transmission(20) to control said transmission(20) to engage for shifting gear-position. The clutchless transmission apparatus provided in the present invention doesn't need a clutch during gear-position shifting, and therefore it is light, simple, easy to maintain and control, and can be used in a wide range of application.
Abstract:
The present invention provides an apparatus and method for controlling an accelerator for electric vehicles. The method comprises steps of: acquiring an actual accelerator pedal depth value and a current vehicle speed; determining a maximum output torque of motor under the current vehicle speed based on the current vehicle speed; and controlling the output torque of motor in such a way that the growth rate of the output torque higher than that of the actual accelerator pedal depth value at the beginning and then closed to that of the actual accelerator pedal depth value during the actual accelerator pedal depth value growing. The invention makes the output torque grown rapidly within the shallow range of accelerator pedal depth, while makes the output torque grown closed to that of the accelerator pedal depth within the relative deep range of accelerator pedal depth. Thus during the initial stage of acceleration, the vehicle may rapidly output a bigger torque, with an excellent dynamic response, to improve the driving comfort.
Abstract:
A method and apparatus for controlling a motor of an electric vehicle. A current acceleration a of the motor is calculated in real time according to detected rotor position values. If the current acceleration a is greater than a predetermined forward acceleration a 0, then the motor output torque is decreased. If the acceleration a is less than a predetermined backward acceleration a 1, then the motor output torque is increased. Thus, when the vehicle travels from a normal road surface to a slippy road surface or on the contrary, decreasing or increasing the motor output torque may suppress an abrupt variation of vehicle speed. According to a preferred embodiment, reducing output torque during early period may suppress current abrupt variation, protect the power device, and avoid the vehicle being out-of-control caused by a rotor blocking or a motor skidding.
Abstract:
The present disclosure discloses a motor controller and a vehicle with the same. The motor controller includes: a box, the box including a first housing, the first housing being provided with a cooling chamber, two opposite sidewalls of the cooling chamber being respectively provided with an insertion-in hole and an insertion-out hole; an IGBT module, the IGBT module being arranged in the box and inserted into the cooling chamber through the insertion-in hole, two opposite side surfaces of the IGBT module in a thickness direction and an inner wall of the cooling chamber forming liquid passing gaps, two ends of the IGBT module being sealed with the first housing to seal the insertion-in hole and the insertion-out hole; a control board and a drive board, the control board and the drive board being arranged in the box, the control board being located on a side of the drive board facing away from the IGBT module, the drive board being connected to the control board and the IGBT module, respectively; and a capacitor module, the capacitor module being located on a side of the first housing facing away from the drive board, the capacitor module being connected to the IGBT module and dissipating heat through a coolant in the cooling chamber.
Abstract:
The present disclosure relates to the technical field of vehicles, and provides a cable assembly and a vehicle charging system. The cable assembly includes: a power supply plug, adapted to a discharging outlet of a discharging vehicle; a charging plug, adapted to a charging outlet of a to-be-charged vehicle; and a cable, connected between the power supply plug and the charging plug.
Abstract:
A charging system for a vehicle, a vehicle comprising the charging system, and a method for controlling charging a vehicle with the charging system are provided. The charging system comprises: a battery; a first charging branch comprising a first rectifying unit and a first charging interface, in which the battery is connected with the first charging interface via the first rectifying unit; a second charging branch comprising a second rectifying unit and a second charging interface, in which the battery is connected with the second charging interface via the second rectifying unit; and a control unit connected with the first rectifying unit and the second rectifying unit respectively and configured to control the first charging branch and the second charging branch to charge the battery.
Abstract:
The present invention provides an apparatus and method for controlling an accelerator for electric vehicles. The method comprises steps of: acquiring an actual accelerator pedal depth value and a current vehicle speed; determining a maximum output torque of motor under the current vehicle speed based on the current vehicle speed; and controlling the output torque of motor in such a way that the growth rate of the output torque higher than that of the actual accelerator pedal depth value at the beginning and then closed to that of the actual accelerator pedal depth value during the actual accelerator pedal depth value growing. The invention makes the output torque grown rapidly within the shallow range of accelerator pedal depth, while makes the output torque grown closed to that of the accelerator pedal depth within the relative deep range of accelerator pedal depth. Thus during the initial stage of acceleration, the vehicle may rapidly output a bigger torque, with an excellent dynamic response, to improve the driving comfort.