Abstract:
A solar control member utilizes a combination of layers that include spaced apart titanium nitride layers to selectively transmit a higher percentage of visible light than near infrared energy, with a low visible light reflection. The titanium nitride layers are spaced apart by a distance that promotes optical decoupling with respect to occurrence of constructive and destructive interference of visible light propagating between the two titanium nitride layers. In one embodiment, the titanium nitride layers are spaced apart by a laminating adhesive layer. In another embodiment, the titanium nitride layers are formed on opposite sides of a substrate. The ratio of transmission at the wavelength of 550 nm to transmission at the wavelength of 1500 is at least 1.25. Each titanium nitride layer is sputter deposited. Care is taken to ensure that each layer does not become too metallic and to ensure that excessive oxygen is not incorporated into the layer. Thus, the nitrogen flow rate and the linespeed are controlled. Sputtering occurs at a fast rate using high powers and a minimum acceptable nitrogen flow, while minimizing background contamination.
Abstract:
A solar control member (50; 62; 70; and 90) for determining solar control for a window (52) includes an optically massive layer (58; 66; and 80) between an optically functional layer stack (60; 64; 76; and 86) and a titanium nitride layer (56; 68; 78; and 88). The optically massive layer has sufficient thickness to retard or prevent constructive and destructive interference of reflected light. The optically massive layer may be an adhesive, but also may be one or more polymeric substrates. The layer stack may be a Fabry-Perot interference filter. Also in the preferred embodiment, the titanium nitride layer is closer to the window (e.g., glass) than the layer stack.
Abstract:
A solar control member (11) utilizes a combination of layers that include spaced apart titanium nitride layers (16 and 18) to selectively transmit a higher percentage of visible light than near infrared energy, with a low visible light reflection. The titanium nitride layers are spaced apart by a distance that promotes optical decoupling with respect to occurrence of constructive and destructive interference of visible light. In one embodiment, the titanium nitride layers are spaced apart by a laminating adhesive layer (20). The ratio of transmission at the wavelength of 550 nm to transmission at the wavelength of 1500 is at least 1.25. Each titanium nitride layer is sputter deposited. Care is taken to ensure that each layer does not become too metallic and to ensure that excessive oxygen is not incorporated into the layer. Thus, the nitrogen flow rate and the linespeed are controlled. Sputtering occurs at a fast rate using high powers and a minimum acceptable nitrogen flow, while minimizing background contamination.
Abstract:
A solar control member (50; 62; 70; and 90) for determining solar control for a window (52) includes an optically massive layer (58; 66; and 80) between an optically functional layer stack (60; 64; 76; and 86) and a titanium nitride layer (56; 68; 78; and 88). The optically massive layer has sufficient thickness to retard or prevent constructive and destructive interference of reflected light. The optically massive layer may be an adhesive, but also may be one or more polymeric substrates. The layer stack may be a Fabry-Perot interference filter. Also in the preferred embodiment, the titanium nitride layer is closer to the window (e.g., glass) than the layer stack.
Abstract:
A solar control member (50; 62; 70; and 90) for determining solar control for a window (52) includes an optically massive layer (58; 66; and 80) between a gray metal layer (60; 64; 76; and 86) and a titanium nitride layer (56; 68; 78; and 88). The optically massive layer has sufficient thickness to retard or prevent constructive and destructive interference of reflected light. The optically massive layer may be an adhesive, but also may be one or more polymeric substrates. The gray metal layer is preferably nickel chromium, but other gray metal materials provide superior results as compared to the prior art. Also in the preferred embodiment, the titanium nitride layer is closer to the window (e.g., glass) than the gray metal layer.
Abstract:
A solar control member (50; 62; 70; and 90) for determining solar control for a window (52) includes an optically massive layer (58; 66; and 80) between a gray metal layer (60; 64; 76; and 86) and a titanium nitride layer (56; 68; 78; and 88). The optically massive layer has sufficient thickness to retard or prevent constructive and destructive interference of reflected light. The optically massive layer may be an adhesive, but also may be one or more polymeric substrates. The gray metal layer is preferably nickel chromium, but other gray metal materials provide superior results as compared to the prior art. Also in the preferred embodiment, the titanium nitride layer is closer to the window (e.g., glass) than the gray metal layer.
Abstract:
A solar screening, thermally insulating, glare reducing, anti-reflecting coating (24) is formed of a two-layer stack on a substrate (12), with the first layer (22) being formed of titanium nitride and the second layer (26) being formed of a dielectric material having a high refractive index. The first layer is an absorbing layer and the dielectric layer has a refractive index in the range of 1.73 to 2.6. In the preferred embodiment, the dielectric layer is silicon nitride. Also in the preferred embodiment, a thin adhesive primer layer (20) is located between the substrate and the multipurpose window coating, while a lubricating layer (28) is formed on the dielectric layer.