Abstract:
Methods for forming novel fuel cell catalysts are described. The catalyst has a physical structure that is the inverse image of a plurality of hierarchically structured sacrificial support particles. The particles may be formed independently and then infused with one or more transitional metallic salts and nitrogen carbon precursors, or the sacrificial support precursors, transitional metallic salts, and nitrogen carbon precursors may all be combined in such a way that a hierarchically structured sacrificial support with the infused transitional metallic salts and nitrogen carbon precursors is formed in a single step. The infused sacrificial support is then pyrolized, at least once, and the sacrificial support is removed, resulting in the catalyst.
Abstract:
Novel nano-sized materials and methods for making the same are described. The novel nano-sized materials are suitable for use as catalytic supports and, more specifically, can be decorated with one or more catalytic materials so as to form suitable catalysts for DLFC fuel cells utilizing alkaline media. The present disclosure also provides a small, portable, power supply system that incorporates catalysts utilizing the decorated nano-sized materials described herein.
Abstract:
A porous metal-oxide composite particle suitable for use as a oxygen reduction reaction or oxygen evolution reaction catalyst and sacrificial support based methods for making the same.
Abstract:
A method of preparation of metal-chalcogen-nitrogen-carbon (M-Ch-N-C) catalytic material utilizing a sacrificial support approach and using inexpensive and readily available precursors is described. Furthermore, the catalytic materials synthesized using the disclosed methods include multiple types of active sites.
Abstract:
A method of preparing M-N-C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
Novel catalysts suitable for use in biological systems and biological systems using these catalysts are described. In particular, the present disclosure provides microbial fuel cells utilizing non-PGM catalysts having a morphology that makes them particularly suitable for use in a microbial fuel cell.
Abstract:
According to various embodiment the present disclosure provides novel and inexpensive methods of forming amorphous silicon and silicon composite materials with specific pre-determined morphologies and oxygen contents. The various forms of amorphous silicon that result from these methods is useful in a wide variety of applications including, but not limited to, solar and lithium-ion batteries.
Abstract:
A mixed reactant fuel cell (MRFC) including a MRFC-optimized electrocatalyst utilizing a combination of selective catalysts and selective fuel distributors.
Abstract:
Methods for optimizing, designing, making, and assembling various component parts and layers to produce optimized MEAs. Optimization is generally achieved by producing multi-layered MEAs wherein characteristics such as catalyst composition and morphology, ionomer concentration, and hydrophobicity/hydophilicity are specifically tuned in each layer. The MEAs are optimized for use with a variety of catalysts including catalysts with specifically designed and controlled morphology, chemical speciation on the bulk, chemical speciation on the surface, and/or specific hydrophobic or hydrophilic or other characteristics. The catalyst can incorporate non-platinum group metal (non-PGM) and/or platinum group metal (PGM) materials.