Abstract:
A method of contact lithography includes predicting distortions likely to occur in transferring a pattern from a mold (110) to a substrate (130) during a contact lithography process: and modifying the mold (110) to compensate for the distortions. A contact lithography system includes a design subsystem (210) configured to generate data describing a lithography pattern: an analysis subsystem (220) configured to identify one or more distortions likely to occur when using a mold (110) created from the data; and a mold modification subsystem (230) configured to modify the data to compensate for the one or more distortions identified by the analysis subsystem (220).
Abstract:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microresonator system (100) comprises a substrate (106) having a top surface layer (104), at least one waveguide (114,116) embedded within the substrate (106), and a microdisk (102) having a top layer (118), an intermediate layer (122), a bottom layer (120), current isolation region (128), and a peripheral annular region (124,126). The bottom layer (120) of the microdisk (102) is in electrical communication with the top surface layer (104) of the substrate (106) and is positioned so that at least a portion of the peripheral annular region (124,126) is located above the at least one waveguide (114,116). The current isolation region (128) is configured to occupy at least a portion of a central region of the microdisk and has a relatively lower refractive index and relatively larger bandgap than the peripheral annular region.
Abstract:
An apparatus and related methods for facilitating surface-enhanced Raman spectroscopy (SERS) is described. The apparatus comproses a SERS-active structure (102) near which a plurality of analyte molecules (A) are disposed and an actuation device (112) in actuable communication with the SERS-active structure (102) to deform the SERS-active structure (102) while the analyte molecules (A) are disposed therenear. The deformation of the SERS-active structure (102) varies an intensityof radiation Raman-scattered from the analyte molecules (A).
Abstract:
Various embodiments of the present invention are related to microresonator systems and to methods of fabricating the microresonator systems. In one embodiment, a microresonator system (200) comprises a substrate (206) having a top surface layer (204) and at least one waveguide (214,216) embedded in the substrate and positioned adjacent to the top surface layer of the substrate. The microresonator system also includes a microresonator (202,402) having a top layer (218), an intermediate layer (222), a bottom layer (220), a peripheral region, and a peripheral coating (224). The bottom layer (220) of the microresonator is attached to and in electrical communication with the top surface layer (204) of the substrate. The microresonator is positioned so that at least a portion of the peripheral region is located above the at least one waveguide (214, 216). The peripheral coating (224) covers at least a portion of the peripheral surface and has a relatively lower index of refraction than the top, intermediate, and bottom layers of the microresonator.
Abstract:
Various aspects of the prsent invention are directed to electric-field-enhancement structures (100) and detection apparatuses (600, 700, 800) that employ such electric-field-enhancement structures. In one aspect of the present invention, an electric-field-enhancement structure (100) includes a substrate (102) having a surface (104). The substrate (102) is capable of supporting a planar mode (114) having a planar-mode frequency. A plurality of nanofeatures (106) is associated with the surface (104), and each of nanofeatures (106) exhibits a localized-surface-plasmon mode (116) having a localized-surface-plasmon frequency approximately equal to the planar-mode frequency.
Abstract:
Various embodiments of the present invention are directed to demultiplexers that include tunneling resistor nanowire junctions, and to nanowire addressing methods for reliably addressing nanowire signal lines in nanoscale and mixed-scale demultiplexers. In one embodimentof the present invention, an encoder-demulriplexer comprises a number of input signal lines and an encoder (1304) that generates an n-bit-constant-weight-code code-word internal address (1320, 1506, 1704) for each different input address (1318, 1702) received on the input signal lines. The encoder-demultiplexer also includes n microscale signal lines (1306-1311) on which an n-bit-constant-weight-code code word internal address is out put by the encoder and a number of encoder-demultiplexer-addressed nanowire signal lines interconnected with then microscale signal lines (1306-1311) via tunneling resistor junctions, the encoder-demultiplexer-addressed nanowire signal lines each associated with an n-bit-constant-weight-code code-word internal adress (1320, 1506, 1704).
Abstract:
Methods of making nanometer-scale semiconductor structures with controlled size are disclosed. Semiconductor structures (200, 300, 400, 500, 600. 700) that include one or ore nanowires (104, 204, 304, 404, 504, 604, 704) are also disclosed. The nanowires can include a passivation layer or have a hollow tube structure.