Abstract:
A double-sided glassless three-dimensional (3D) display apparatus including a backlight unit may include an light source unit configured to emit light to the front and the rear thereof by diffracting incident light, and first and second display devices configured to use the light emitted by the light source unit as light for a 3D image formation and to form the 3D image on both sides of the light source unit. The light source unit may include a light source portion configured to emit three lights that have three different respective wavelengths and a light guide panel configured to transmit the lights emitted by the light source portion to the first and second display devices.
Abstract:
A directional backlight unit, a three-dimensional (3D) image display apparatus, and a 3D image displaying method are provided. The directional backlight unit includes a light guide plate having an emission surface on which a plurality of grating elements including first and second groups of grating elements are provided. The plurality of grating elements are arranged such that light beams emitted from the first and second groups of grating elements commonly propagate through a plurality of pixel points and respectively form first and second groups of view points of which corresponding regions do not overlap with each other.
Abstract:
A backlight unit using a micro optical switch and a three-dimensional (3D) image display device are provided. The backlight unit includes a light source configured to irradiate light, a light guide plate configured to guide the irradiated light, an optical switch array including micro optical switches disposed above the light guide plate for each of cells of the backlight unit, and a lens array disposed above and corresponding to the optical switch array. Each of the micro optical switches includes a substrate, a first electrode layer disposed on the substrate and including first holes, and a second electrode layer spaced apart from the first electrode layer and including second holes not facing the first holes.
Abstract:
A display apparatus includes a driving substrate including a plurality of grooves, micro light-emitting devices provided in the plurality of grooves and configured to emit light of a first color, and a color conversion layer provided on the micro light-emitting devices and configured to convert the light of the first color into light of at least one second color, wherein the color conversion layer includes light blocking patterns spaced apart from the micro light-emitting devices and spaced apart from each other on a same plane, a nano-porous layer provided between adjacent ones of the light blocking patterns, spaced apart from the micro light-emitting devices, and including a plurality of nano-pores, and quantum dots impregnated in the nano-porous layer and configured to convert the light of the first color into the light of the at least one second color.
Abstract:
Provided is a display device including a driving substrate, a barrier layer disposed on an upper surface of the driving substrate and including a plurality of recesses, a micro-semiconductor light emitting device disposed in each of the plurality of recesses, and a side reflective structure disposed in the barrier layer and provided adjacent to a sidewall of each of the plurality of recesses.
Abstract:
Provided is a display transfer structure including a substrate including a plurality of wells, and a plurality of light emitting elements disposed in the plurality of wells, wherein the plurality of light emitting elements have a rotationally asymmetric planar shape, and wherein the plurality of wells respectively have a planar shape different from a planar shape of each of the plurality of light emitting elements.
Abstract:
A method of manufacturing a micro-light-emitting diode (LED) array includes: providing a first substrate including a plurality of circular grooves formed on a first surface thereof; supplying a plurality of micro-LEDs onto the first surface of the first substrate; and aligning the plurality of micro-LEDs with the plurality of circular grooves, wherein at least two electrodes are formed on a second surface of each of the plurality of micro-LEDs to be apart from each other, and the at least two electrodes include a first electrode formed to be relatively close to a center of the second surface and at least one second electrode formed at an edge of the second surface.
Abstract:
Provided is a micro-LED display, a micro-LED transferring substrate, and a method of transferring micro-LEDs using the micro-LED transferring substrate. The micro-LED includes a backplane substrate; and a plurality of sub-pixels provided on the backplane substrate, wherein at least one sub-pixel from among the plurality of sub-pixels includes a first micro-LED; and a second micro-LED different from the first micro-LED.
Abstract:
A sensor for recognizing a fingerprint and sensing a touch is provided. The sensor includes a touch sensing area in which a first touch electrode and a second touch electrode are arranged to provide touch sensing nodes at which touch sensing is performed; and a fingerprint-touch sensing area comprising a fingerprint recognition area in which a first fingerprint electrode and a second fingerprint electrode are arranged and electrically separated from the first touch electrode and the second touch electrode, the first fingerprint electrode and the second fingerprint electrode being configured to provide fingerprint sensing nodes at which a fingerprint is recognized in a fingerprint recognition mode, wherein in the fingerprint recognition area, a portion of the first fingerprint electrode and the second fingerprint electrode is used for fingerprint recognition and, as the touch sensing nodes, the touch sensing.
Abstract:
A method of recognizing a fingerprint includes generating, by using a fingerprint sensor, an input fingerprint image that is to be used when a fingerprint verification mode is executed; obtaining, from a memory, a registered fingerprint image that is generated from a finger image captured by a camera and stored in the memory prior to the generating the input fingerprint image; determining, from among partial regions of a registered fingerprint image that is obtained, a partial region of the registered fingerprint image, which is superimposed on the input fingerprint image, as a registered superimposed image; converting the registered superimposed image such that a first histogram of the registered superimposed image corresponds to a second histogram of the input fingerprint image; and determining, by comparing the registered superimposed image, which is converted, with the input fingerprint image, whether the input fingerprint image is verified.