Abstract:
An apparatus comprises a laser diode configured to generate light during a write operation. A slider comprises a near-field transducer (NFT) and an optical waveguide. The slider is configured for heat-assisted magnetic recording and to communicate the light to the NFT via the waveguide. A writer heater of the slider is configured to receive power during the write operation. A thermal sensor is situated at or near an air bearing surface of the slider. The thermal sensor is configured to produce a sensor signal in response to sensing back-heating from the medium while the NFT generates heat during a write operation. Circuitry, coupled to the thermal sensor, is configured to compare the sensor signal to a threshold and generate an output signal indicative of degradation of NFT performance in response to the sensor signal exceeding the threshold.
Abstract:
One or more magnetic recording disks are coupled to a spindle motor, each of the disks having opposing recording surfaces. Two or more actuators are moveable independently over at least a first recording surface of the one or more disks. A first actuator of the two or more actuators comprises a first write head and a first read head. A second actuator of the two or more actuators comprises at least a second read head and may include a second write head. A controller is coupled to the two or more actuators and configured to write data to a track on the first recording surface using the first write head, and perform a read operation on the data written to the track using the second read head. The controller is also configured to verify that the data was successfully written to the track in response to the read operation. The read operation can be performed within less than one revolution of the first recording surface after the write operation.
Abstract:
First and second nominal head-to-media spacings of a magnetic recording head are determined that result in tracks being written to a magnetic recording medium at respective narrower and wider tracks widths. Three or more adjacent tracks of user data are written to the magnetic recording medium using one of the first and second nominal head-to-media spacings so that the adjacent tracks alternate between the narrower and wider track widths.
Abstract:
At least a portion of a first servo mark is read using a first read head during a rotation of a disk, the rotation comprising no more than 360 degrees. At least a portion of a second servo mark is read using a second read head during the rotation of the disk. Tracking positions of the first read head and the second read head are determined during the rotation based on reading the first servo mark and the second servo mark.
Abstract:
Bits are written to a track of a heat-assisted magnetic recording medium via a write transducer at a first skew angle. The track is read via a read transducer oriented at a second skew angle different from the first skew angle. The second skew angle causes the read transducer be more closely aligned with boundaries of the bits than if oriented at the first skew angle.
Abstract:
Two or more signals are read from two or more respective tracks of a disk drive recording medium using respective two or more read transducers co-located on a slider. The slider is aligned to the two or more tracks in response to the correlation between the two or more signals.
Abstract:
First and second user data signals of respective first and second tracks are simultaneously read from a disk via first and second read transducers co-located on a slider. A position error of the first and second read transducers is corrected based on the first and second user data signals.
Abstract:
An apparatus includes a housing, a data storage magazine configured to hold a plurality of data storage devices, and a movable carriage disposed within the housing that is configured to selectively couple the data storage devices to a host device. The data storage magazine includes a set of magazine signal paths configured to provide signals to the plurality of data storage devices. The movable carriage includes a set of carriage signal paths configured to provide signals to the plurality of data storage devices. The apparatus includes a controller configured to power the plurality of data storage devices by selectively routing the signals via the set of magazine signal paths or the set of carriage signal paths.
Abstract:
An apparatus comprises a laser diode configured to generate modulated light during a write operation in response to receiving modulated current having a mean amplitude that varies or is constant. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A writer heater of the slider is configured to receive power during the write operation having a magnitude that varies or is constant. A sensor is situated on or within the slider. The sensor is configured to produce a sensor signal representative of output optical power of the laser diode. Measuring circuitry is coupled to the sensor and configured to measure a change in the sensor signal indicative of a laser mode hop during the write operation.
Abstract:
One or more magnetic recording disks are coupled to a spindle motor, each of the disks having opposing recording surfaces. Two or more actuators are moveable independently over at least a first recording surface of the one or more disks. A first actuator of the two or more actuators comprises a first write head and a first read head. A second actuator of the two or more actuators comprises at least a second read head and may include a second write head. A controller is coupled to the two or more actuators and configured to write data to a track on the first recording surface using the first write head, and perform a read operation on the data written to the track using the second read head. The controller is also configured to verify that the data was successfully written to the track in response to the read operation. The read operation can be performed within less than one revolution of the first recording surface after the write operation.