Abstract:
Size-confined nanocomposite powders and methods for their manufacture are provided by coating fine powders with a nanoscale powder of a different composition. The nanocomposite plastics disclosed offer performance characteristics approaching those of metals and alloys. The nanocomposite powders are alternatively used for dispersion strengthening of metals, alloys, and ceramics. Novel materials based nanotechnology for energy devices and programmable drug delivery are disclosed.
Abstract:
Methods for functionalizing the surface of nanomaterials to improve processing and product manufacturing. These methods are useful for oxides, nitrides, carbides, borides, metals, alloys, chalcogenides, and other compositions.
Abstract:
Post-processing methods for nanoparticles are disclosed. Methods for real time quality control of nanoscale powder manufacture are discussed. Uses of post-processed particles and consolidation methods are disclosed. Disclosed methods can enable commercial use of nanoscale powders in wide range of nanotechnology applications.
Abstract:
Nanostructured non-stoichiometric materials are disclosed. Novel catalysts and their applications are discussed. More specifically, the specifications teach the use of nanotechnology and nanostructured materials for developing novel catalysts for petrochemical, polymers, plastics, specialty chemicals, environmental and pharmaceutical applications.
Abstract:
Ion conducting solid electrolytes are constructed from nanoscale precursor material. Nanocrystalline powders are pressed into disc structures and sintered to the appropriate degree of densification. Metallic material is mixed with 0 to 65 vol % nanostructured electrolyte powders to form a cermet mix and then coated on each side of the disc and fitted with electrical leads. The electrical conductivity of a Ag/YSZ/Ag cell so assembled exhibited about an order of magnitude enhancement in oxygen ion conductivity. As an oxygen-sensing element in a standard O2/Ag/YSZ/Ag/N2 set up, the nanocrystalline YSZ element exhibited commercially significant oxygen ion conductivity at low temperatures. The invention can be utilized to prepare nanostructured ion conducting solid electrolytes for a wide range of applications, including sensors, oxygen pumps, fuel cells, batteries, electrosynthesis reactors and catalytic membranes.
Abstract translation:离子导电固体电解质由纳米级前体材料构成。 将纳米晶体粉末压制成盘状结构并烧结至适当的致密度。 将金属材料与0至65体积%的纳米结构电解质粉末混合以形成金属陶瓷混合物,然后涂覆在盘的每一侧并配有电引线。 如此组装的Ag / YSZ / Ag电池的电导率显示出氧离子电导率提高了一个数量级。 作为标准O2 / Ag / YSZ / Ag / N2中的氧传感元件,纳米晶体YSZ元件在低温下表现出商业上显着的氧离子传导性。 本发明可用于制备用于广泛应用的纳米结构离子导电固体电解质,包括传感器,氧气泵,燃料电池,电池,电合成反应器和催化膜。
Abstract:
A nanocomposite structure comprising a nanostructured filler or carrier intimately mixed with a matrix, and methods of making such a structure. The nanostructured filler has a domain size sufficiently small to alter an electrical, magnetic, optical, electrochemical, chemical, thermal, biomedical, or tribological property of either filler or composite by at least 20%.
Abstract:
Methods and devices for transforming less desirable chemical species into more desirable or useful chemical forms are disclosed. The specifications can be used to treat pollutants into more benign compositions and to produce useful chemicals from raw materials and wastes. The methods and devices disclosed utilize electrical current induced by electromagnetic field and high surface area formulations. The invention can also be applied to improve the performance of existing catalysts and to prepare novel devices.
Abstract:
Nanoparticles comprising molybdenum, methods of manufacturing nanoparticles comprising molybdenum, and nanotechnology applications of nanoparticles comprising molybdenum, such as electronics, optical devices, photonics, reagents for fine chemical synthesis, pigments and catalysts, are provided.
Abstract:
Methods for functionalizing the surface of nanomaterials to improve processing and product manufacturing. These methods are useful for oxides, nitrides, carbides, borides, metals, alloys, chalcogenides, and other compositions.
Abstract:
Rare earth compositions comprising nanoparticles are described along with various nanotechnology applications of such nanoparticles. The compositions of the nanomaterials discussed may include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).