Abstract:
A cooling hole for a component includes a meter section and a diffuser section. The diffuser section has a footprint region defined by five sides, a first side of the five sides extending along substantially an entire height of the diffuser section and second and third sides of the five sides meeting in an obtuse angle opposite the first side. A component having the cooling hole and a method of forming the cooling hole are also disclosed.
Abstract:
A gas turbine engine component has first and second components each having a platform with an upper surface and a lower surface and with a plurality of side faces extending between the upper and lower surfaces. The platforms are arranged adjacent to one another such that one side face of the platform faces a mating side face of an adjacent platform. At least one cooling hole is formed within the platform and has an inlet to receive a cooling flow and an outlet at least at one of the side faces. The at least one cooling hole increases in size in a direction toward the outlet. A method of cooling a gas turbine engine is also disclosed.
Abstract:
A method of manufacturing a component that includes providing a core structure, casting a component about the core structure, removing a first portion of the core structure from the cast component, and leaving a second portion of the core structure in the cast component to provide a reduced cross-section in the cast component.
Abstract:
An assembly for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, an airfoil including a radial end, a first passageway having an outlet at the radial end, and a second passageway having an inlet at the radial end. The assembly further includes a cover having at least one turning cavity configured to direct fluid expelled from the outlet of the first passageway into the inlet of the second passageway.
Abstract:
A gas turbine engine includes a structure that has walls that provide a cooling passage and a cooling surface. A non-ferrous obstruction is relative to the walls. The obstruction includes a portion spaced from the cooling surface to provide a gap which is configured to receive a cooling fluid.
Abstract:
A platform trailing edge seal for a turbomachine airfoil (e.g., a blade or vane) assembly includes a body configured to extend into an aft portion of a mateface gap defined between a circumferentially adjacent pair of turbomachine airfoil platforms to minimize flow from entering a blade-vane cavity through the aft portion of the mateface gap.
Abstract:
A gas turbine engine component comprises a body extending between two ends and having at least two cooling passages. The body has a first wall and second wall. At least two cooling passages include a first passage that is closer to the first wall than is a second of the passages at upstream locations along a flow path. The second passage has upstream locations that are closer to the second wall than are upstream portions of the first passage. The first and second passages cross along a length of the flow path such that downstream portions of the second passage are closer to the first wall than are downstream portions of the first passage, and downstream portions of the first passage are closer to the second wall than are downstream portions of the second passage.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A tip trench is provided in the tip and wrapping at least a portion of the airfoil from the pressure side wall around the leading edge to the suction side wall. The tip trench is provided by a recess.
Abstract:
A component for a gas turbine engine, according to an exemplary aspect of the present disclosure includes, among other things, a body portion and a cooling circuit disposed inside of the body portion. The cooling circuit includes a first baffle received within a first core cavity that extends inside of the body portion, a second baffle received within a second core cavity that extends inside of the body portion, and a first rib disposed between the first core cavity and the second core cavity. The first baffle is in fluid communication with the second baffle through the first rib.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil having an exterior surface that extends in a radial direction to a tip. A tip trench is provided in the tip and wrapping at least a portion of the airfoil from the pressure side wall around the leading edge to the suction side wall. The tip trench is provided by a recess.