Abstract:
A fan blade is provided and comprises a leading edge, an attachment root extending aft of the leading edge, and a trench formed in a surface of the attachment root. An attachment root is also provided. The attachment root comprises a leading edge, a dovetail extending aft of the leading edge, and a trench formed in a surface of the dovetail. A gas turbine engine is also provided. The gas turbine engine comprises a compressor section configured to rotate about an axis, a combustor aft of the compressor section, and a turbine section aft of the compressor section and configured to rotate about the axis. A fan may be disposed forward of the turbine section and include a blade. The blade may have a trench formed in an attachment root.
Abstract:
A spacer for use in a hub and blade assembly of a gas turbine engine including a first layer of a first material forming the spacer body having an elongate shape. The first material has a first stiffness. A second layer of a second material is mechanically attached to the first layer. The second material has a second stiffness different from the first stiffness.
Abstract:
A spacer for use in a hub and blade assembly of a gas turbine engine including a first layer of a first material forming the spacer body having an elongate shape. The first material has a first stiffness. A second layer of a second material is mechanically attached to the first layer. The second material has a second stiffness different from the first stiffness.
Abstract:
A rotor assembly is provided that includes a rotor blade, a root spacer, and a rotor disk with a slot. The rotor blade includes a blade root arranged within the slot. The blade root includes a root base segment and a pair of root side segments. The root base segment is laterally separated from the rotor disk by the root side segments. The root spacer is arranged within the slot, and includes a side surface that extends radially between an inner surface and an outer surface. The side surface is approximately laterally aligned with an intersection between the root base segment and a first of the root side segments. The outer surface engages the root base segment.
Abstract:
A fan rotor includes a rotor body with at least one slot receiving a fan blade. The fan blade has an outer surface, at least at some areas, formed of a first material and an airfoil extending from a dovetail. The dovetail is received in the slot. A spacer is positioned radially inwardly of the dovetail biasing the fan blade against the slot. The spacer includes a grounding element, which is in contact with a portion of the dovetail formed of a second material that is more electrically conductive than the first material. The grounding element is in contact with a rotating element that rotates with the rotor. The rotating element is formed of a third material. The first material is less electrically conductive than the third material. The grounding and rotating elements form a ground path from the portion of the dovetail into the rotor.
Abstract:
A blade comprises an airfoil extending from a trailing edge to a leading edge. The airfoil includes a body formed of an aluminum containing material. A sheath is at the leading edge and is formed of a titanium containing material. A sandwich is positioned intermediate the sheath and the airfoil body, the sandwich including an outer adhesive layer adjacent the sheath, an intermediate fabric layer and an inner adhesive layer adjacent the body. A gas turbine engine is also disclosed.
Abstract:
A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 17.2-18.2 inches (436-462 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span is in a range of 10.0-11.0 inches (255-281 mm). The airfoil element includes at least two of a first mode with a frequency of 51±10% Hz, a second mode with a frequency of 147±10% Hz, a third mode with a frequency of 267±10% Hz, a fourth mode with a frequency of 350±10% Hz, a fifth mode with a frequency of 454±10% Hz and a sixth mode with a frequency of 619±10% Hz.
Abstract:
An assembly includes a rotor disk, a rotor blade and a root spacer. The rotor disk includes a slot that extends longitudinally into the rotor disk. The rotor blade includes a blade root arranged within the slot. The root spacer is arranged with the slot between the rotor disk and the blade root. The root spacer extends longitudinally to a spacer end, and includes a grip element and a plurality of notches. The grip element is arranged at the spacer end laterally between the notches. The grip element at least partially defines the notches. The notches extend radially and longitudinally into the root spacer.
Abstract:
A rotor assembly is provided that includes a rotor blade, a root spacer, and a rotor disk with a slot. The rotor blade includes a blade root arranged within the slot. The blade root includes a root base segment and a pair of root side segments. The root base segment is laterally separated from the rotor disk by the root side segments. The root spacer is arranged within the slot, and includes a side surface that extends radially between an inner surface and an outer surface. The side surface is approximately laterally aligned with an intersection between the root base segment and a first of the root side segments. The outer surface engages the root base segment.
Abstract:
A rotor assembly is provided that includes a rotor disk, a rotor blade and a root spacer. The rotor disk includes a slot. The rotor blade includes a blade root that is arranged within the slot. The root spacer is arranged within the slot between the rotor disk and the blade root. The root spacer includes a base segment, a side segment and a fracture feature. The base segment radially engages the rotor disk. The side segment is radially separated from the rotor disk by a gap. The fracture feature may radially fracture the root spacer at an intersection between the base segment and the side segment.